tf.nn.rnn_cell.BasicLSTMCell.state_size

tf.nn.rnn_cell.BasicLSTMCell.state_size

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.mean(name='mean')

tf.FixedLenFeature.default_value

tf.FixedLenFeature.default_value Alias for field number 2

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.mean(name='mean')

tf.contrib.learn.TensorFlowRNNRegressor.__init__()

tf.contrib.learn.TensorFlowRNNRegressor.__init__(rnn_size, cell_type='gru', num_layers=1, input_op_fn=null_input_op_fn, initial_state=None, bidirectional=False, sequence_length=None, attn_length=None, attn_size=None, attn_vec_size=None, n_classes=0, batch_size=32, steps=50, optimizer='Adagrad', learning_rate=0.1, clip_gradients=5.0, continue_training=False, config=None, verbose=1) Initializes a TensorFlowRNNRegressor instance. Args: rnn_size: The size for rnn cell, e.g. size of your word embe

tf.contrib.learn.TensorFlowRNNClassifier.bias_

tf.contrib.learn.TensorFlowRNNClassifier.bias_ Returns bias of the rnn layer.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.mode()

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.mode(name='mode') Mode.

tf.contrib.distributions.Chi2.mode()

tf.contrib.distributions.Chi2.mode(name='mode') Mode. Additional documentation from Gamma: The mode of a gamma distribution is (alpha - 1) / beta when alpha > 1, and NaN otherwise. If self.allow_nan_stats is False, an exception will be raised rather than returning NaN.

tf.contrib.distributions.QuantizedDistribution.is_continuous

tf.contrib.distributions.QuantizedDistribution.is_continuous

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.name

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.name