tf.contrib.framework.arg_scoped_arguments()

tf.contrib.framework.arg_scoped_arguments(func) Returns the list kwargs that arg_scope can set for a func. Args: func: function which has been decorated with @add_arg_scope. Returns: a list of kwargs names.

tf.contrib.distributions.Categorical.log_prob()

tf.contrib.distributions.Categorical.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.metrics.streaming_mean_relative_error()

tf.contrib.metrics.streaming_mean_relative_error(predictions, labels, normalizer, weights=None, metrics_collections=None, updates_collections=None, name=None) Computes the mean relative error by normalizing with the given values. The streaming_mean_relative_error function creates two local variables, total and count that are used to compute the mean relative absolute error. This average is weighted by weights, and it is ultimately returned as mean_relative_error: an idempotent operation that s

tf.contrib.distributions.Dirichlet

class tf.contrib.distributions.Dirichlet Dirichlet distribution. This distribution is parameterized by a vector alpha of concentration parameters for k classes.

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.distribution

tf.test.is_built_with_cuda()

tf.test.is_built_with_cuda() Returns whether TensorFlow was built with CUDA (GPU) support.

tf.QueueBase.dtypes

tf.QueueBase.dtypes The list of dtypes for each component of a queue element.

tf.contrib.learn.monitors.CheckpointSaver.end()

tf.contrib.learn.monitors.CheckpointSaver.end(session=None)

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.input_dict

tf.Session.as_default()

tf.Session.as_default() Returns a context manager that makes this object the default session. Use with the with keyword to specify that calls to Operation.run() or Tensor.eval() should be executed in this session. c = tf.constant(..) sess = tf.Session() with sess.as_default(): assert tf.get_default_session() is sess print(c.eval()) To get the current default session, use tf.get_default_session(). N.B. The as_default context manager does not close the session when you exit the context, an