tf.contrib.distributions.StudentT.param_shapes()

tf.contrib.distributions.StudentT.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.beta

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.beta Scale parameter.

tf.contrib.learn.monitors.NanLoss.every_n_step_begin()

tf.contrib.learn.monitors.NanLoss.every_n_step_begin(step)

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.dtype

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.dtype

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.__init__()

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.clone(name=None, **dist_args)

tf.contrib.learn.monitors.StepCounter

class tf.contrib.learn.monitors.StepCounter Steps per second monitor.

tf.contrib.distributions.WishartFull.is_continuous

tf.contrib.distributions.WishartFull.is_continuous

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.__init__()

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)

tensorflow::EnvWrapper::LoadLibrary()

Status tensorflow::EnvWrapper::LoadLibrary(const char *library_filename, void **handle) override