tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.graph

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.graph

tf.contrib.distributions.StudentT.event_shape()

tf.contrib.distributions.StudentT.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.entropy(name='entropy')

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.name

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.name

tf.contrib.distributions.Bernoulli.p

tf.contrib.distributions.Bernoulli.p

tensorflow::EnvWrapper::SchedClosureAfter()

void tensorflow::EnvWrapper::SchedClosureAfter(int64 micros, std::function< void()> closure) override

tensorflow::Env::DeleteFile()

Status tensorflow::Env::DeleteFile(const string &fname) Deletes the named file.

tf.SparseTensor.eval()

tf.SparseTensor.eval(feed_dict=None, session=None) Evaluates this sparse tensor in a Session. Calling this method will execute all preceding operations that produce the inputs needed for the operation that produces this tensor. N.B. Before invoking SparseTensor.eval(), its graph must have been launched in a session, and either a default session must be available, or session must be specified explicitly. Args: feed_dict: A dictionary that maps Tensor objects to feed values. See Session.run() f

tf.contrib.distributions.Chi2.is_continuous

tf.contrib.distributions.Chi2.is_continuous

tensorflow::TensorShape::IsValidShape()

Status tensorflow::TensorShape::IsValidShape(const TensorShapeProto &proto) Returns OK iff proto is a valid tensor shape, and a descriptive error status otherwise.