tf.contrib.learn.monitors.ValidationMonitor.step_end()

tf.contrib.learn.monitors.ValidationMonitor.step_end(step, output) Overrides BaseMonitor.step_end. When overriding this method, you must call the super implementation. Args: step: int, the current value of the global step. output: dict mapping string values representing tensor names to the value resulted from running these tensors. Values may be either scalars, for scalar tensors, or Numpy array, for non-scalar tensors. Returns: bool, the result of every_n_step_end, if that was called this

tf.contrib.learn.monitors.ValidationMonitor.__init__()

tf.contrib.learn.monitors.ValidationMonitor.__init__(x=None, y=None, input_fn=None, batch_size=None, eval_steps=None, every_n_steps=100, metrics=None, early_stopping_rounds=None, early_stopping_metric='loss', early_stopping_metric_minimize=True, name=None) Initializes a ValidationMonitor. Args: x: See BaseEstimator.evaluate. y: See BaseEstimator.evaluate. input_fn: See BaseEstimator.evaluate. batch_size: See BaseEstimator.evaluate. eval_steps: See BaseEstimator.evaluate. every_n_steps: C

tf.contrib.learn.monitors.ValidationMonitor.post_step()

tf.contrib.learn.monitors.ValidationMonitor.post_step(step, session)

tf.contrib.learn.monitors.ValidationMonitor.every_n_step_begin()

tf.contrib.learn.monitors.ValidationMonitor.every_n_step_begin(step) Callback before every n'th step begins. Args: step: int, the current value of the global step. Returns: A list of tensors that will be evaluated at this step.

tf.contrib.learn.monitors.ValidationMonitor.every_n_step_end()

tf.contrib.learn.monitors.ValidationMonitor.every_n_step_end(step, outputs)

tf.contrib.learn.monitors.ValidationMonitor.every_n_post_step()

tf.contrib.learn.monitors.ValidationMonitor.every_n_post_step(step, session) Callback after a step is finished or end() is called. Args: step: int, the current value of the global step. session: Session object.

tf.contrib.learn.monitors.ValidationMonitor.epoch_begin()

tf.contrib.learn.monitors.ValidationMonitor.epoch_begin(epoch) Begin epoch. Args: epoch: int, the epoch number. Raises: ValueError: if we've already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.ValidationMonitor.best_value

tf.contrib.learn.monitors.ValidationMonitor.best_value Returns the best early stopping metric value found so far.

tf.contrib.learn.monitors.ValidationMonitor.epoch_end()

tf.contrib.learn.monitors.ValidationMonitor.epoch_end(epoch) End epoch. Args: epoch: int, the epoch number. Raises: ValueError: if we've not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.ValidationMonitor.early_stopped

tf.contrib.learn.monitors.ValidationMonitor.early_stopped Returns True if this monitor caused an early stop.