tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.value_type

tf.contrib.distributions.BetaWithSoftplusAB.std()

tf.contrib.distributions.BetaWithSoftplusAB.std(name='std') Standard deviation.

tf.contrib.learn.DNNClassifier

class tf.contrib.learn.DNNClassifier A classifier for TensorFlow DNN models. Example: education = sparse_column_with_hash_bucket(column_name="education", hash_bucket_size=1000) occupation = sparse_column_with_hash_bucket(column_name="occupation", hash_bucket_size=1000) education_emb = embedding_column(sparse_id_column=education, dimension=16, combiner="sum") occupation_emb =

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.graph

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.graph

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.mean(name='mean')

tf.contrib.learn.BaseEstimator.get_variable_names()

tf.contrib.learn.BaseEstimator.get_variable_names() Returns list of all variable names in this model. Returns: List of names.

tf.contrib.distributions.Chi2WithAbsDf.variance()

tf.contrib.distributions.Chi2WithAbsDf.variance(name='variance') Variance.

tf.contrib.distributions.MultivariateNormalCholesky.mode()

tf.contrib.distributions.MultivariateNormalCholesky.mode(name='mode') Mode.

tf.contrib.distributions.WishartCholesky.is_continuous

tf.contrib.distributions.WishartCholesky.is_continuous