tf.VarLenFeature.dtype

tf.VarLenFeature.dtype Alias for field number 0

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.mean()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.mean(name='mean') Mean.

tf.contrib.distributions.Dirichlet.sample()

tf.contrib.distributions.Dirichlet.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.

tf.nn.rnn_cell.LSTMStateTuple.h

tf.nn.rnn_cell.LSTMStateTuple.h Alias for field number 1

tensorflow::SessionOptions::config

ConfigProto tensorflow::SessionOptions::config Configuration options.

tensorflow::TensorShape::InsertDim()

void tensorflow::TensorShape::InsertDim(int d, int64 size) Insert a dimension somewhere in the TensorShape. REQUIRES: 0 <= d <= dims() REQUIRES: size >= 0

tf.contrib.rnn.TimeFreqLSTMCell.output_size

tf.contrib.rnn.TimeFreqLSTMCell.output_size

tf.contrib.distributions.Gamma.is_continuous

tf.contrib.distributions.Gamma.is_continuous

tf.contrib.learn.DNNClassifier

class tf.contrib.learn.DNNClassifier A classifier for TensorFlow DNN models. Example: education = sparse_column_with_hash_bucket(column_name="education", hash_bucket_size=1000) occupation = sparse_column_with_hash_bucket(column_name="occupation", hash_bucket_size=1000) education_emb = embedding_column(sparse_id_column=education, dimension=16, combiner="sum") occupation_emb =

tf.contrib.distributions.BetaWithSoftplusAB.std()

tf.contrib.distributions.BetaWithSoftplusAB.std(name='std') Standard deviation.