tf.contrib.learn.monitors.ValidationMonitor.step_end()

tf.contrib.learn.monitors.ValidationMonitor.step_end(step, output) Overrides BaseMonitor.step_end. When overriding this method, you must call the super implementation. Args: step: int, the current value of the global step. output: dict mapping string values representing tensor names to the value resulted from running these tensors. Values may be either scalars, for scalar tensors, or Numpy array, for non-scalar tensors. Returns: bool, the result of every_n_step_end, if that was called this

tf.contrib.distributions.Dirichlet.alpha

tf.contrib.distributions.Dirichlet.alpha Shape parameter.

tf.contrib.graph_editor.SubGraphView.op()

tf.contrib.graph_editor.SubGraphView.op(op_id) Get an op by its index.

tf.contrib.distributions.Normal.cdf()

tf.contrib.distributions.Normal.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.Gamma.__init__()

tf.contrib.distributions.Gamma.__init__(alpha, beta, validate_args=False, allow_nan_stats=True, name='Gamma') Construct Gamma distributions with parameters alpha and beta. The parameters alpha and beta must be shaped in a way that supports broadcasting (e.g. alpha + beta is a valid operation). Args: alpha: Floating point tensor, the shape params of the distribution(s). alpha must contain only positive values. beta: Floating point tensor, the inverse scale params of the distribution(s). beta

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.value()

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.value(name='value')

tf.contrib.distributions.NormalWithSoftplusSigma.mu

tf.contrib.distributions.NormalWithSoftplusSigma.mu Distribution parameter for the mean.

tf.errors.CancelledError

class tf.errors.CancelledError Raised when an operation or step is cancelled. For example, a long-running operation (e.g. queue.enqueue() may be cancelled by running another operation (e.g. queue.close(cancel_pending_enqueues=True), or by closing the session. A step that is running such a long-running operation will fail by raising CancelledError.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.std()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.std(name='std') Standard deviation.

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor

class tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor NormalWithSoftplusSigmaTensor is a StochasticTensor backed by the distribution NormalWithSoftplusSigma.