tf.contrib.learn.TensorFlowEstimator.get_params()

tf.contrib.learn.TensorFlowEstimator.get_params(deep=True) Get parameters for this estimator. Args: deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params : mapping of string to any Parameter names mapped to their values.

tf.contrib.learn.TensorFlowEstimator.fit()

tf.contrib.learn.TensorFlowEstimator.fit(x, y, steps=None, monitors=None, logdir=None) Neural network model from provided model_fn and training data. Note: called first time constructs the graph and initializers variables. Consecutives times it will continue training the same model. This logic follows partial_fit() interface in scikit-learn. To restart learning, create new estimator. Args: x: matrix or tensor of shape [n_samples, n_features...]. Can be iterator that returns arrays of features.

tf.contrib.learn.TensorFlowEstimator.evaluate()

tf.contrib.learn.TensorFlowEstimator.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) Evaluates given model with provided evaluation data. See superclass Estimator for more details. Args: x: features. y: targets. input_fn: Input function. feed_fn: Function creating a feed dict every time it is called. batch_size: minibatch size to use on the input. steps: Number of steps for which to evaluate model. metrics: Dict of metric ops t

tf.contrib.learn.TensorFlowEstimator.export()

tf.contrib.learn.TensorFlowEstimator.export(*args, **kwargs) Exports inference graph into given dir. (deprecated arguments) SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23. Instructions for updating: The signature of the input_fn accepted by export is changing to be consistent with what's used by tf.Learn Estimator's train/evaluate. input_fn (and in most cases, input_feature_key) will become required args, and use_deprecated_input_fn will default to False and be removed al

tf.contrib.learn.TensorFlowEstimator.config

tf.contrib.learn.TensorFlowEstimator.config

tf.contrib.learn.run_n()

tf.contrib.learn.run_n(output_dict, feed_dict=None, restore_checkpoint_path=None, n=1) Run output_dict tensors n times, with the same feed_dict each run. Args: output_dict: A dict mapping string names to tensors to run. Must all be from the same graph. feed_dict: dict of input values to feed each run. restore_checkpoint_path: A string containing the path to a checkpoint to restore. n: Number of times to repeat. Returns: A list of n dict objects, each containing values read from output_di

tf.contrib.learn.TensorFlowEstimator

class tf.contrib.learn.TensorFlowEstimator Base class for all TensorFlow estimators.

tf.contrib.learn.run_feeds()

tf.contrib.learn.run_feeds(*args, **kwargs) See run_feeds_iter(). Returns a list instead of an iterator.

tf.contrib.learn.RunConfig.__init__()

tf.contrib.learn.RunConfig.__init__(master=None, task=None, num_ps_replicas=None, num_cores=0, log_device_placement=False, gpu_memory_fraction=1, cluster_spec=None, tf_random_seed=None, save_summary_steps=100, save_checkpoints_secs=600, keep_checkpoint_max=5, keep_checkpoint_every_n_hours=10000, job_name=None, is_chief=None, evaluation_master='') Constructor. If set to None, master, task, num_ps_replicas, cluster_spec, job_name, and is_chief are set based on the TF_CONFIG environment variable,

tf.contrib.learn.read_batch_record_features()

tf.contrib.learn.read_batch_record_features(file_pattern, batch_size, features, randomize_input=True, num_epochs=None, queue_capacity=10000, reader_num_threads=1, parser_num_threads=1, name='dequeue_record_examples') Reads TFRecord, queues, batches and parses Example proto. See more detailed description in read_examples. Args: file_pattern: List of files or pattern of file paths containing Example records. See tf.gfile.Glob for pattern rules. batch_size: An int or scalar Tensor specifying th