tf.contrib.learn.monitors.StepCounter.every_n_post_step()

tf.contrib.learn.monitors.StepCounter.every_n_post_step(step, session) Callback after a step is finished or end() is called. Args: step: int, the current value of the global step. session: Session object.

tf.contrib.learn.monitors.StepCounter.epoch_end()

tf.contrib.learn.monitors.StepCounter.epoch_end(epoch) End epoch. Args: epoch: int, the epoch number. Raises: ValueError: if we've not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.StepCounter.epoch_begin()

tf.contrib.learn.monitors.StepCounter.epoch_begin(epoch) Begin epoch. Args: epoch: int, the epoch number. Raises: ValueError: if we've already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.StepCounter.end()

tf.contrib.learn.monitors.StepCounter.end(session=None)

tf.contrib.learn.monitors.StepCounter.begin()

tf.contrib.learn.monitors.StepCounter.begin(max_steps=None) Called at the beginning of training. When called, the default graph is the one we are executing. Args: max_steps: int, the maximum global step this training will run until. Raises: ValueError: if we've already begun a run.

tf.contrib.learn.monitors.StepCounter

class tf.contrib.learn.monitors.StepCounter Steps per second monitor.

tf.contrib.learn.monitors.RunHookAdapterForMonitors.__init__()

tf.contrib.learn.monitors.RunHookAdapterForMonitors.__init__(monitors)

tf.contrib.learn.monitors.RunHookAdapterForMonitors.end()

tf.contrib.learn.monitors.RunHookAdapterForMonitors.end(session)

tf.contrib.learn.monitors.RunHookAdapterForMonitors.begin()

tf.contrib.learn.monitors.RunHookAdapterForMonitors.begin()

tf.contrib.learn.monitors.RunHookAdapterForMonitors.before_run()

tf.contrib.learn.monitors.RunHookAdapterForMonitors.before_run(run_context)