tf.contrib.learn.monitors.RunHookAdapterForMonitors.after_run()

tf.contrib.learn.monitors.RunHookAdapterForMonitors.after_run(run_context, run_values)

tf.contrib.learn.monitors.RunHookAdapterForMonitors

class tf.contrib.learn.monitors.RunHookAdapterForMonitors Wraps monitors into a SessionRunHook.

tf.contrib.learn.monitors.PrintTensor.__init__()

tf.contrib.learn.monitors.PrintTensor.__init__(tensor_names, every_n=100, first_n=1) Initializes a PrintTensor monitor. Args: tensor_names: dict of tag to tensor names or iterable of tensor names (strings). every_n: int, print every N steps. See PrintN. first_n: int, also print the first N steps. See PrintN.

tf.contrib.learn.monitors.PrintTensor.step_end()

tf.contrib.learn.monitors.PrintTensor.step_end(step, output) Overrides BaseMonitor.step_end. When overriding this method, you must call the super implementation. Args: step: int, the current value of the global step. output: dict mapping string values representing tensor names to the value resulted from running these tensors. Values may be either scalars, for scalar tensors, or Numpy array, for non-scalar tensors. Returns: bool, the result of every_n_step_end, if that was called this step,

tf.contrib.learn.monitors.PrintTensor.step_begin()

tf.contrib.learn.monitors.PrintTensor.step_begin(step) Overrides BaseMonitor.step_begin. When overriding this method, you must call the super implementation. Args: step: int, the current value of the global step. Returns: A list, the result of every_n_step_begin, if that was called this step, or an empty list otherwise. Raises: ValueError: if called more than once during a step.

tf.contrib.learn.monitors.PrintTensor.set_estimator()

tf.contrib.learn.monitors.PrintTensor.set_estimator(estimator) A setter called automatically by the target estimator. If the estimator is locked, this method does nothing. Args: estimator: the estimator that this monitor monitors. Raises: ValueError: if the estimator is None.

tf.contrib.learn.monitors.PrintTensor.run_on_all_workers

tf.contrib.learn.monitors.PrintTensor.run_on_all_workers

tf.contrib.learn.monitors.PrintTensor.post_step()

tf.contrib.learn.monitors.PrintTensor.post_step(step, session)

tf.contrib.learn.monitors.PrintTensor.every_n_step_end()

tf.contrib.learn.monitors.PrintTensor.every_n_step_end(step, outputs)

tf.contrib.learn.monitors.PrintTensor.every_n_step_begin()

tf.contrib.learn.monitors.PrintTensor.every_n_step_begin(step)