linear_model.LinearRegression()

class sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=1) [source] Ordinary least squares Linear Regression. Parameters: fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignor

linear_model.LassoLarsIC()

class sklearn.linear_model.LassoLarsIC(criterion='aic', fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=2.2204460492503131e-16, copy_X=True, positive=False) [source] Lasso model fit with Lars using BIC or AIC for model selection The optimization objective for Lasso is: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 AIC is the Akaike information criterion and BIC is the Bayes Information criterion. Such criteria are useful to select the valu

linear_model.LassoLarsCV()

class sklearn.linear_model.LassoLarsCV(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True, positive=False) [source] Cross-validated Lasso, using the LARS algorithm The optimization objective for Lasso is: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the User Guide. Parameters: fit_intercept : boolean whether to calculate the intercept for this model. If

linear_model.LassoLars()

class sklearn.linear_model.LassoLars(alpha=1.0, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=2.2204460492503131e-16, copy_X=True, fit_path=True, positive=False) [source] Lasso model fit with Least Angle Regression a.k.a. Lars It is a Linear Model trained with an L1 prior as regularizer. The optimization objective for Lasso is: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the User Guide. Parameters: alpha : float Constant

linear_model.LassoCV()

class sklearn.linear_model.LassoCV(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic') [source] Lasso linear model with iterative fitting along a regularization path The best model is selected by cross-validation. The optimization objective for Lasso is: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more i

linear_model.Lasso()

class sklearn.linear_model.Lasso(alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False, positive=False, random_state=None, selection='cyclic') [source] Linear Model trained with L1 prior as regularizer (aka the Lasso) The optimization objective for Lasso is: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Technically the Lasso model is optimizing the same objective function as the Elastic Net with l1_ratio=1.0 (n

linear_model.LarsCV()

class sklearn.linear_model.LarsCV(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True, positive=False) [source] Cross-validated Least Angle Regression model Read more in the User Guide. Parameters: fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). po

linear_model.Lars()

class sklearn.linear_model.Lars(fit_intercept=True, verbose=False, normalize=True, precompute='auto', n_nonzero_coefs=500, eps=2.2204460492503131e-16, copy_X=True, fit_path=True, positive=False) [source] Least Angle Regression model a.k.a. LAR Read more in the User Guide. Parameters: n_nonzero_coefs : int, optional Target number of non-zero coefficients. Use np.inf for no limit. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will

linear_model.HuberRegressor()

class sklearn.linear_model.HuberRegressor(epsilon=1.35, max_iter=100, alpha=0.0001, warm_start=False, fit_intercept=True, tol=1e-05) [source] Linear regression model that is robust to outliers. The Huber Regressor optimizes the squared loss for the samples where |(y - X'w) / sigma| < epsilon and the absolute loss for the samples where |(y - X'w) / sigma| > epsilon, where w and sigma are parameters to be optimized. The parameter sigma makes sure that if y is scaled up or down by a cert

linear_model.ElasticNetCV()

class sklearn.linear_model.ElasticNetCV(l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=0.0001, cv=None, copy_X=True, verbose=0, n_jobs=1, positive=False, random_state=None, selection='cyclic') [source] Elastic Net model with iterative fitting along a regularization path The best model is selected by cross-validation. Read more in the User Guide. Parameters: l1_ratio : float or array of floats, optional float b