For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like handwritten digit recognition, the Bernoulli Restricted Boltzmann machine model (BernoulliRBM
) can perform effective non-linear feature extraction.
In order to learn good latent representations from a small dataset, we artificially generate more labeled data by perturbing the training data with linear shifts of 1 pixel in each direction.
This example shows how to build a classification pipeline with a BernoulliRBM feature extractor and a LogisticRegression
classifier. The hyperparameters of the entire model (learning rate, hidden layer size, regularization) were optimized by grid search, but the search is not reproduced here because of runtime constraints.
Logistic regression on raw pixel values is presented for comparison. The example shows that the features extracted by the BernoulliRBM help improve the classification accuracy.
from __future__ import print_function print(__doc__) # Authors: Yann N. Dauphin, Vlad Niculae, Gabriel Synnaeve # License: BSD import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import convolve from sklearn import linear_model, datasets, metrics from sklearn.model_selection import train_test_split from sklearn.neural_network import BernoulliRBM from sklearn.pipeline import Pipeline
Setting up
def nudge_dataset(X, Y): """ This produces a dataset 5 times bigger than the original one, by moving the 8x8 images in X around by 1px to left, right, down, up """ direction_vectors = [ [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]]] shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant', weights=w).ravel() X = np.concatenate([X] + [np.apply_along_axis(shift, 1, X, vector) for vector in direction_vectors]) Y = np.concatenate([Y for _ in range(5)], axis=0) return X, Y # Load Data digits = datasets.load_digits() X = np.asarray(digits.data, 'float32') X, Y = nudge_dataset(X, digits.target) X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0) # Models we will use logistic = linear_model.LogisticRegression() rbm = BernoulliRBM(random_state=0, verbose=True) classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)])
Training
# Hyper-parameters. These were set by cross-validation, # using a GridSearchCV. Here we are not performing cross-validation to # save time. rbm.learning_rate = 0.06 rbm.n_iter = 20 # More components tend to give better prediction performance, but larger # fitting time rbm.n_components = 100 logistic.C = 6000.0 # Training RBM-Logistic Pipeline classifier.fit(X_train, Y_train) # Training Logistic regression logistic_classifier = linear_model.LogisticRegression(C=100.0) logistic_classifier.fit(X_train, Y_train)
Out:
[BernoulliRBM] Iteration 1, pseudo-likelihood = -25.39, time = 0.39s [BernoulliRBM] Iteration 2, pseudo-likelihood = -23.77, time = 0.51s [BernoulliRBM] Iteration 3, pseudo-likelihood = -22.94, time = 0.49s [BernoulliRBM] Iteration 4, pseudo-likelihood = -21.91, time = 0.50s [BernoulliRBM] Iteration 5, pseudo-likelihood = -21.69, time = 0.49s [BernoulliRBM] Iteration 6, pseudo-likelihood = -21.06, time = 0.49s [BernoulliRBM] Iteration 7, pseudo-likelihood = -20.89, time = 0.49s [BernoulliRBM] Iteration 8, pseudo-likelihood = -20.64, time = 0.49s [BernoulliRBM] Iteration 9, pseudo-likelihood = -20.36, time = 0.49s [BernoulliRBM] Iteration 10, pseudo-likelihood = -20.09, time = 0.49s [BernoulliRBM] Iteration 11, pseudo-likelihood = -20.08, time = 0.49s [BernoulliRBM] Iteration 12, pseudo-likelihood = -19.82, time = 0.48s [BernoulliRBM] Iteration 13, pseudo-likelihood = -19.64, time = 0.49s [BernoulliRBM] Iteration 14, pseudo-likelihood = -19.61, time = 0.49s [BernoulliRBM] Iteration 15, pseudo-likelihood = -19.57, time = 0.49s [BernoulliRBM] Iteration 16, pseudo-likelihood = -19.41, time = 0.49s [BernoulliRBM] Iteration 17, pseudo-likelihood = -19.30, time = 0.49s [BernoulliRBM] Iteration 18, pseudo-likelihood = -19.25, time = 0.49s [BernoulliRBM] Iteration 19, pseudo-likelihood = -19.27, time = 0.49s [BernoulliRBM] Iteration 20, pseudo-likelihood = -19.01, time = 0.49s
Evaluation
print() print("Logistic regression using RBM features:\n%s\n" % ( metrics.classification_report( Y_test, classifier.predict(X_test)))) print("Logistic regression using raw pixel features:\n%s\n" % ( metrics.classification_report( Y_test, logistic_classifier.predict(X_test))))
Out:
Logistic regression using RBM features: precision recall f1-score support 0 0.99 0.99 0.99 174 1 0.92 0.95 0.93 184 2 0.95 0.98 0.97 166 3 0.97 0.91 0.94 194 4 0.97 0.95 0.96 186 5 0.93 0.93 0.93 181 6 0.98 0.97 0.97 207 7 0.95 1.00 0.97 154 8 0.90 0.88 0.89 182 9 0.91 0.93 0.92 169 avg / total 0.95 0.95 0.95 1797 Logistic regression using raw pixel features: precision recall f1-score support 0 0.85 0.94 0.89 174 1 0.57 0.55 0.56 184 2 0.72 0.85 0.78 166 3 0.76 0.74 0.75 194 4 0.85 0.82 0.84 186 5 0.74 0.75 0.75 181 6 0.93 0.88 0.91 207 7 0.86 0.90 0.88 154 8 0.68 0.55 0.61 182 9 0.71 0.74 0.72 169 avg / total 0.77 0.77 0.77 1797
Plotting
plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(rbm.components_): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('100 components extracted by RBM', fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
Total running time of the script: (0 minutes 32.353 seconds)
plot_rbm_logistic_classification.py
plot_rbm_logistic_classification.ipynb
Please login to continue.