sklearn.cluster.k_means(X, n_clusters, init='k-means++', precompute_distances='auto', n_init=10, max_iter=300, verbose=False, tol=0.0001, random_state=None, copy_x=True, n_jobs=1, algorithm='auto', return_n_iter=False) [source]
 
K-means clustering algorithm. Read more in the User Guide. Parameters:
X : array-like or sparse matrix, shape (n_samples, n_features)  The observations to cluster.  n_clusters : int  The number of clusters to form as well as the number of centroids to generate.  max