This example illustrates GPC on XOR data. Compared are a stationary, isotropic kernel (RBF) and a non-stationary kernel (DotProduct). On this particular dataset, the DotProduct kernel obtains considerably better results because the class-boundaries are linear and coincide with the coordinate axes. In general, stationary kernels often obtain better results.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | print (__doc__) # Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF, DotProduct xx, yy = np.meshgrid(np.linspace( - 3 , 3 , 50 ), np.linspace( - 3 , 3 , 50 )) rng = np.random.RandomState( 0 ) X = rng.randn( 200 , 2 ) Y = np.logical_xor(X[:, 0 ] > 0 , X[:, 1 ] > 0 ) # fit the model plt.figure(figsize = ( 10 , 5 )) kernels = [ 1.0 * RBF(length_scale = 1.0 ), 1.0 * DotProduct(sigma_0 = 1.0 ) * * 2 ] for i, kernel in enumerate (kernels): clf = GaussianProcessClassifier(kernel = kernel, warm_start = True ).fit(X, Y) # plot the decision function for each datapoint on the grid Z = clf.predict_proba(np.vstack((xx.ravel(), yy.ravel())).T)[:, 1 ] Z = Z.reshape(xx.shape) plt.subplot( 1 , 2 , i + 1 ) image = plt.imshow(Z, interpolation = 'nearest' , extent = (xx. min (), xx. max (), yy. min (), yy. max ()), aspect = 'auto' , origin = 'lower' , cmap = plt.cm.PuOr_r) contours = plt.contour(xx, yy, Z, levels = [ 0 ], linewidths = 2 , linetypes = '--' ) plt.scatter(X[:, 0 ], X[:, 1 ], s = 30 , c = Y, cmap = plt.cm.Paired) plt.xticks(()) plt.yticks(()) plt.axis([ - 3 , 3 , - 3 , 3 ]) plt.colorbar(image) plt.title( "%s\n Log-Marginal-Likelihood:%.3f" % (clf.kernel_, clf.log_marginal_likelihood(clf.kernel_.theta)), fontsize = 12 ) plt.tight_layout() plt.show() |
Total running time of the script: (0 minutes 1.002 seconds)
Download Python source code:
plot_gpc_xor.py
Download IPython notebook:
plot_gpc_xor.ipynb
Please login to continue.