linear_model.SGDRegressor()

class sklearn.linear_model.SGDRegressor(loss='squared_loss', penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate='invscaling', eta0=0.01, power_t=0.25, warm_start=False, average=False) [source] Linear model fitted by minimizing a regularized empirical loss with SGD SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the model is updated along th

linear_model.SGDClassifier()

class sklearn.linear_model.SGDClassifier(loss='hinge', penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=0.1, n_jobs=1, random_state=None, learning_rate='optimal', eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False) [source] Linear classifiers (SVM, logistic regression, a.o.) with SGD training. This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the gradient of the

linear_model.RidgeCV()

class sklearn.linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None, store_cv_values=False) [source] Ridge regression with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Read more in the User Guide. Parameters: alphas : numpy array of shape [n_alphas] Array of alpha values to try. Regularization strength; must be a positive float.

linear_model.RidgeClassifierCV()

class sklearn.linear_model.RidgeClassifierCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, class_weight=None) [source] Ridge classifier with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently. Read more in the User Guide. Parameters: alphas : numpy array of shape [n_alphas] Array of alpha

linear_model.RidgeClassifier()

class sklearn.linear_model.RidgeClassifier(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, class_weight=None, solver='auto', random_state=None) [source] Classifier using Ridge regression. Read more in the User Guide. Parameters: alpha : float Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha correspo

linear_model.Ridge()

class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver='auto', random_state=None) [source] Linear least squares with l2 regularization. This model solves a regression model where the loss function is the linear least squares function and regularization is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d

linear_model.RANSACRegressor()

class sklearn.linear_model.RANSACRegressor(base_estimator=None, min_samples=None, residual_threshold=None, is_data_valid=None, is_model_valid=None, max_trials=100, stop_n_inliers=inf, stop_score=inf, stop_probability=0.99, residual_metric=None, loss='absolute_loss', random_state=None) [source] RANSAC (RANdom SAmple Consensus) algorithm. RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set. More information can be found

linear_model.RandomizedLogisticRegression()

class sklearn.linear_model.RandomizedLogisticRegression(C=1, scaling=0.5, sample_fraction=0.75, n_resampling=200, selection_threshold=0.25, tol=0.001, fit_intercept=True, verbose=False, normalize=True, random_state=None, n_jobs=1, pre_dispatch='3*n_jobs', memory=Memory(cachedir=None)) [source] Randomized Logistic Regression Randomized Logistic Regression works by subsampling the training data and fitting a L1-penalized LogisticRegression model where the penalty of a random subset of coeffic

linear_model.RandomizedLasso()

class sklearn.linear_model.RandomizedLasso(alpha='aic', scaling=0.5, sample_fraction=0.75, n_resampling=200, selection_threshold=0.25, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=2.2204460492503131e-16, random_state=None, n_jobs=1, pre_dispatch='3*n_jobs', memory=Memory(cachedir=None)) [source] Randomized Lasso. Randomized Lasso works by subsampling the training data and computing a Lasso estimate where the penalty of a random subset of coefficien

linear_model.Perceptron()

class sklearn.linear_model.Perceptron(penalty=None, alpha=0.0001, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, eta0=1.0, n_jobs=1, random_state=0, class_weight=None, warm_start=False) [source] Read more in the User Guide. Parameters: penalty : None, ?l2? or ?l1? or ?elasticnet? The penalty (aka regularization term) to be used. Defaults to None. alpha : float Constant that multiplies the regularization term if regularization is used. Defaults to 0.0001 fit_intercept : bool Wh