class sklearn.linear_model.ElasticNetCV(l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=0.0001, cv=None, copy_X=True, verbose=0, n_jobs=1, positive=False, random_state=None, selection='cyclic') [source]
Elastic Net model with iterative fitting along a regularization path The best model is selected by cross-validation. Read more in the User Guide. Parameters:
l1_ratio : float or array of floats, optional float b