generic.__reduce__()

generic.__reduce__()

numpy.random.logistic()

numpy.random.logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and scale (>0). Parameters: loc : float scale : float > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned. Returns: samples : ndarray or sca

RandomState.vonmises()

RandomState.vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the interval [-pi, pi]. The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution. Parameters: mu : float Mode (?center?) of the distribution. kappa : fl

generic.byteswap()

generic.byteswap() Not implemented (virtual attribute) Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the attributes of the ndarray class so as to provide a uniform API. See also The

MaskedArray.tostring()

MaskedArray.tostring(fill_value=None, order='C') [source] This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

recarray.data

recarray.data Python buffer object pointing to the start of the array?s data.

numpy.polynomial.hermite_e.hermedomain

numpy.polynomial.hermite_e.hermedomain = array([-1, 1])

numpy.polynomial.polynomial.polyint()

numpy.polynomial.polynomial.polyint(c, m=1, k=[], lbnd=0, scl=1, axis=0) [source] Integrate a polynomial. Returns the polynomial coefficients c integrated m times from lbnd along axis. At each iteration the resulting series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use in a linear change of variable. (?Buyer beware?: note that, depending on what one is doing, one may want scl to be the reciprocal of what one might expect; for more information,

chararray.real

chararray.real The real part of the array. See also numpy.real equivalent function Examples >>> x = np.sqrt([1+0j, 0+1j]) >>> x.real array([ 1. , 0.70710678]) >>> x.real.dtype dtype('float64')

numpy.asarray_chkfinite()

numpy.asarray_chkfinite(a, dtype=None, order=None) [source] Convert the input to an array, checking for NaNs or Infs. Parameters: a : array_like Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Success requires no NaNs or Infs. dtype : data-type, optional By default, the data-type is inferred from the input data. order : {?C?, ?F?}, optional Whether to use row-major (C-style) or col