chararray.setfield()

chararray.setfield(val, dtype, offset=0) Put a value into a specified place in a field defined by a data-type. Place val into a?s field defined by dtype and beginning offset bytes into the field. Parameters: val : object Value to be placed in field. dtype : dtype object Data-type of the field in which to place val. offset : int, optional The number of bytes into the field at which to place val. Returns: None See also getfield Examples >>> x = np.eye(3) >>> x.ge

generic.size

generic.size number of elements in the gentype

record.copy()

record.copy() Not implemented (virtual attribute) Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the attributes of the ndarray class so as to provide a uniform API. See also The

recarray.copy()

recarray.copy(order='C') Return a copy of the array. Parameters: order : {?C?, ?F?, ?A?, ?K?}, optional Controls the memory layout of the copy. ?C? means C-order, ?F? means F-order, ?A? means ?F? if a is Fortran contiguous, ?C? otherwise. ?K? means match the layout of a as closely as possible. (Note that this function and :func:numpy.copy are very similar, but have different default values for their order= arguments.) See also numpy.copy, numpy.copyto Examples >>> x = np.arra

ndarray.sum()

ndarray.sum(axis=None, dtype=None, out=None, keepdims=False) Return the sum of the array elements over the given axis. Refer to numpy.sum for full documentation. See also numpy.sum equivalent function

numpy.polynomial.laguerre.lagvander3d()

numpy.polynomial.laguerre.lagvander3d(x, y, z, deg) [source] Pseudo-Vandermonde matrix of given degrees. Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z). If l, m, n are the given degrees in x, y, z, then The pseudo-Vandermonde matrix is defined by where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading indices of V index the points (x, y, z) and the last index encodes the degrees of the Laguerre polynomials. If V = lagvander3d(x, y,

matrix.item()

matrix.item(*args) Copy an element of an array to a standard Python scalar and return it. Parameters: *args : Arguments (variable number and type) none: in this case, the method only works for arrays with one element (a.size == 1), which element is copied into a standard Python scalar object and returned. int_type: this argument is interpreted as a flat index into the array, specifying which element to copy and return. tuple of int_types: functions as does a single int_type argument, exce

matrix.setfield()

matrix.setfield(val, dtype, offset=0) Put a value into a specified place in a field defined by a data-type. Place val into a?s field defined by dtype and beginning offset bytes into the field. Parameters: val : object Value to be placed in field. dtype : dtype object Data-type of the field in which to place val. offset : int, optional The number of bytes into the field at which to place val. Returns: None See also getfield Examples >>> x = np.eye(3) >>> x.getfi

matrix.mean()

matrix.mean(axis=None, dtype=None, out=None) [source] Returns the average of the matrix elements along the given axis. Refer to numpy.mean for full documentation. See also numpy.mean Notes Same as ndarray.mean except that, where that returns an ndarray, this returns a matrix object. Examples >>> x = np.matrix(np.arange(12).reshape((3, 4))) >>> x matrix([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> x.mean() 5.5 >>> x.mean(0)

Laguerre.copy()

Laguerre.copy() [source] Return a copy. Returns: new_series : series Copy of self.