Functional programming

apply_along_axis(func1d, axis, arr, *args, ...) Apply a function to 1-D slices along the given axis. apply_over_axes(func, a, axes) Apply a function repeatedly over multiple axes. vectorize(pyfunc[, otypes, doc, excluded, cache]) Generalized function class. frompyfunc(func, nin, nout) Takes an arbitrary Python function and returns a Numpy ufunc. piecewise(x, condlist, funclist, *args, **kw) Evaluate a piecewise-defined function.

Legendre.roots()

Legendre.roots() [source] Return the roots of the series polynomial. Compute the roots for the series. Note that the accuracy of the roots decrease the further outside the domain they lie. Returns: roots : ndarray Array containing the roots of the series.

Polynomial.has_samedomain()

Polynomial.has_samedomain(other) [source] Check if domains match. New in version 1.6.0. Parameters: other : class instance The other class must have the domain attribute. Returns: bool : boolean True if the domains are the same, False otherwise.

numpy.polynomial.hermite.hermvander2d()

numpy.polynomial.hermite.hermvander2d(x, y, deg) [source] Pseudo-Vandermonde matrix of given degrees. Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). The pseudo-Vandermonde matrix is defined by where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of V index the points (x, y) and the last index encodes the degrees of the Hermite polynomials. If V = hermvander2d(x, y, [xdeg, ydeg]), then the columns of V correspond to the elements of a

dtype.base

dtype.base

Mathematical functions

Trigonometric functions sin(x[, out]) Trigonometric sine, element-wise. cos(x[, out]) Cosine element-wise. tan(x[, out]) Compute tangent element-wise. arcsin(x[, out]) Inverse sine, element-wise. arccos(x[, out]) Trigonometric inverse cosine, element-wise. arctan(x[, out]) Trigonometric inverse tangent, element-wise. hypot(x1, x2[, out]) Given the ?legs? of a right triangle, return its hypotenuse. arctan2(x1, x2[, out]) Element-wise arc tangent of x1/x2 choosing the quadrant correctly

Mathematical functions with automatic domain (numpy.emath)

Note numpy.emath is a preferred alias for numpy.lib.scimath, available after numpy is imported. Wrapper functions to more user-friendly calling of certain math functions whose output data-type is different than the input data-type in certain domains of the input. For example, for functions like log with branch cuts, the versions in this module provide the mathematically valid answers in the complex plane: >>> import math >>> from numpy.lib import scimath >>> scimat

Chebyshev.has_sametype()

Chebyshev.has_sametype(other) [source] Check if types match. New in version 1.7.0. Parameters: other : object Class instance. Returns: bool : boolean True if other is same class as self

RandomState.random_sample()

RandomState.random_sample(size=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the ?continuous uniform? distribution over the stated interval. To sample multiply the output of random_sample by (b-a) and add a: (b - a) * random_sample() + a Parameters: size : int or tuple of ints, optional Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned. Returns: out : fl

chararray.data

chararray.data Python buffer object pointing to the start of the array?s data.