-
numpy.asanyarray(a, dtype=None, order=None)
[source] -
Convert the input to an ndarray, but pass ndarray subclasses through.
Parameters: a : array_like
Input data, in any form that can be converted to an array. This includes scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays.
dtype : data-type, optional
By default, the data-type is inferred from the input data.
order : {?C?, ?F?}, optional
Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to ?C?.
Returns: out : ndarray or an ndarray subclass
Array interpretation of
a
. Ifa
is an ndarray or a subclass of ndarray, it is returned as-is and no copy is performed.See also
-
asarray
- Similar function which always returns ndarrays.
-
ascontiguousarray
- Convert input to a contiguous array.
-
asfarray
- Convert input to a floating point ndarray.
-
asfortranarray
- Convert input to an ndarray with column-major memory order.
-
asarray_chkfinite
- Similar function which checks input for NaNs and Infs.
-
fromiter
- Create an array from an iterator.
-
fromfunction
- Construct an array by executing a function on grid positions.
Examples
Convert a list into an array:
>>> a = [1, 2] >>> np.asanyarray(a) array([1, 2])
Instances of
ndarray
subclasses are passed through as-is:>>> a = np.matrix([1, 2]) >>> np.asanyarray(a) is a True
-
numpy.asanyarray()
2017-01-10 18:12:50
Please login to continue.