MultiIndex.argmin()

MultiIndex.argmin(axis=None) [source] return a ndarray of the minimum argument indexer See also numpy.ndarray.argmin

pandas.date_range()

pandas.date_range(start=None, end=None, periods=None, freq='D', tz=None, normalize=False, name=None, closed=None, **kwargs) [source] Return a fixed frequency datetime index, with day (calendar) as the default frequency Parameters: start : string or datetime-like, default None Left bound for generating dates end : string or datetime-like, default None Right bound for generating dates periods : integer or None, default None If None, must specify start and end freq : string or DateOffse

Panel.swaplevel()

Panel.swaplevel(i=-2, j=-1, axis=0) [source] Swap levels i and j in a MultiIndex on a particular axis Parameters: i, j : int, string (can be mixed) Level of index to be swapped. Can pass level name as string. Returns: swapped : type of caller (new object) Changed in version 0.18.1: The indexes i and j are now optional, and default to the two innermost levels of the index.

TimedeltaIndex.get_slice_bound()

TimedeltaIndex.get_slice_bound(label, side, kind) [source] Calculate slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if side=='right') position of given label. Parameters: label : object side : {?left?, ?right?} kind : {?ix?, ?loc?, ?getitem?}

CategoricalIndex.nunique()

CategoricalIndex.nunique(dropna=True) [source] Return number of unique elements in the object. Excludes NA values by default. Parameters: dropna : boolean, default True Don?t include NaN in the count. Returns: nunique : int

MultiIndex.all()

MultiIndex.all(other=None) [source]

DatetimeIndex.intersection()

DatetimeIndex.intersection(other) [source] Specialized intersection for DatetimeIndex objects. May be much faster than Index.intersection Parameters: other : DatetimeIndex or array-like Returns: y : Index or DatetimeIndex

DataFrame.to_stata()

DataFrame.to_stata(fname, convert_dates=None, write_index=True, encoding='latin-1', byteorder=None, time_stamp=None, data_label=None, variable_labels=None) [source] A class for writing Stata binary dta files from array-like objects Parameters: fname : str or buffer String path of file-like object convert_dates : dict Dictionary mapping columns containing datetime types to stata internal format to use when wirting the dates. Options are ?tc?, ?td?, ?tm?, ?tw?, ?th?, ?tq?, ?ty?. Column ca

DataFrame.reorder_levels()

DataFrame.reorder_levels(order, axis=0) [source] Rearrange index levels using input order. May not drop or duplicate levels Parameters: order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). axis : int Where to reorder levels. Returns: type of caller (new object)

pandas.read_sas()

pandas.read_sas(filepath_or_buffer, format=None, index=None, encoding=None, chunksize=None, iterator=False) [source] Read SAS files stored as either XPORT or SAS7BDAT format files. Parameters: filepath_or_buffer : string or file-like object Path to the SAS file. format : string {?xport?, ?sas7bdat?} or None If None, file format is inferred. If ?xport? or ?sas7bdat?, uses the corresponding format. index : identifier of index column, defaults to None Identifier of column that should be