Series.plot.pie()

Series.plot.pie(**kwds) [source] Pie chart New in version 0.17.0. Parameters: **kwds : optional Keyword arguments to pass on to pandas.Series.plot(). Returns: axes : matplotlib.AxesSubplot or np.array of them

Panel.replace()

Panel.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None) [source] Replace values given in ?to_replace? with ?value?. Parameters: to_replace : str, regex, list, dict, Series, numeric, or None str or regex: str: string exactly matching to_replace will be replaced with value regex: regexs matching to_replace will be replaced with value list of str, regex, or numeric: First, if to_replace and value are both lists, they must be the same

Panel.bfill()

Panel.bfill(axis=None, inplace=False, limit=None, downcast=None) [source] Synonym for NDFrame.fillna(method=?bfill?)

DatetimeIndex.order()

DatetimeIndex.order(return_indexer=False, ascending=True) [source] Return sorted copy of Index DEPRECATED: use Index.sort_values()

Series.dt.tz

Series.dt.tz

Panel4D.tshift()

Panel4D.tshift(periods=1, freq=None, axis='major') [source]

CategoricalIndex.size

CategoricalIndex.size return the number of elements in the underlying data

DatetimeIndex.to_datetime()

DatetimeIndex.to_datetime(dayfirst=False) [source]

Panel.iloc

Panel.iloc Purely integer-location based indexing for selection by position. .iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array. Allowed inputs are: An integer, e.g. 5. A list or array of integers, e.g. [4, 3, 0]. A slice object with ints, e.g. 1:7. A boolean array. A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above) .iloc will raise I

Panel.at

Panel.at Fast label-based scalar accessor Similarly to loc, at provides label based scalar lookups. You can also set using these indexers.