Index.is_integer()

Index.is_integer() [source]

Index.is_floating()

Index.is_floating() [source]

Index.is_all_dates

Index.is_all_dates = None

Index.is_categorical()

Index.is_categorical() [source]

Index.is_boolean()

Index.is_boolean() [source]

Index.isin()

Index.isin(values, level=None) [source] Compute boolean array of whether each index value is found in the passed set of values. Parameters: values : set or list-like Sought values. New in version 0.18.1. Support for values as a set level : str or int, optional Name or position of the index level to use (if the index is a MultiIndex). Returns: is_contained : ndarray (boolean dtype) Notes If level is specified: if it is the name of one and only one index level, use that level; other

Index.is_()

Index.is_(other) [source] More flexible, faster check like is but that works through views Note: this is not the same as Index.identical(), which checks that metadata is also the same. Parameters: other : object other object to compare against. Returns: True if both have same underlying data, False otherwise : bool

Index.intersection()

Index.intersection(other) [source] Form the intersection of two Index objects. This returns a new Index with elements common to the index and other. Sortedness of the result is not guaranteed. Parameters: other : Index or array-like Returns: intersection : Index Examples >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.intersection(idx2) Int64Index([3, 4], dtype='int64')

Index.insert()

Index.insert(loc, item) [source] Make new Index inserting new item at location. Follows Python list.append semantics for negative values Parameters: loc : int item : object Returns: new_index : Index

Index.identical()

Index.identical(other) [source] Similar to equals, but check that other comparable attributes are also equal