CategoricalIndex.is_mixed()

CategoricalIndex.is_mixed() [source]

Series.ftypes

Series.ftypes return if the data is sparse|dense

DatetimeIndex.holds_integer()

DatetimeIndex.holds_integer() [source]

CategoricalIndex.is_integer()

CategoricalIndex.is_integer() [source]

Panel.ge()

Panel.ge(other, axis=None) [source] Wrapper for comparison method ge

MultiIndex.get_indexer_for()

MultiIndex.get_indexer_for(target, **kwargs) [source] guaranteed return of an indexer even when non-unique

pandas.to_datetime()

pandas.to_datetime(*args, **kwargs) [source] Convert argument to datetime. Parameters: arg : string, datetime, list, tuple, 1-d array, Series errors : {?ignore?, ?raise?, ?coerce?}, default ?raise? If ?raise?, then invalid parsing will raise an exception If ?coerce?, then invalid parsing will be set as NaT If ?ignore?, then invalid parsing will return the input dayfirst : boolean, default False Specify a date parse order if arg is str or its list-likes. If True, parses dates with the d

MultiIndex.flags

MultiIndex.flags

Panel.ndim

Panel.ndim Number of axes / array dimensions

MultiIndex[source]

class pandas.MultiIndex [source] A multi-level, or hierarchical, index object for pandas objects Parameters: levels : sequence of arrays The unique labels for each level labels : sequence of arrays Integers for each level designating which label at each location sortorder : optional int Level of sortedness (must be lexicographically sorted by that level) names : optional sequence of objects Names for each of the index levels. (name is accepted for compat) copy : boolean, default Fa