Series.to_string()

Series.to_string(buf=None, na_rep='NaN', float_format=None, header=True, index=True, length=False, dtype=False, name=False, max_rows=None) [source] Render a string representation of the Series Parameters: buf : StringIO-like, optional buffer to write to na_rep : string, optional string representation of NAN to use, default ?NaN? float_format : one-parameter function, optional formatter function to apply to columns? elements if they are floats default None header: boolean, default Tru

Series.set_value()

Series.set_value(label, value, takeable=False) [source] Quickly set single value at passed label. If label is not contained, a new object is created with the label placed at the end of the result index Parameters: label : object Partial indexing with MultiIndex not allowed value : object Scalar value takeable : interpret the index as indexers, default False Returns: series : Series If label is contained, will be reference to calling Series, otherwise a new object

Resampler.get_group()

Resampler.get_group(name, obj=None) [source] Constructs NDFrame from group with provided name Parameters: name : object the name of the group to get as a DataFrame obj : NDFrame, default None the NDFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used Returns: group : type of obj

Panel4D.ix

Panel4D.ix A primarily label-location based indexer, with integer position fallback. .ix[] supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type. .ix is the most general indexer and will support any of the inputs in .loc and .iloc. .ix also supports floating point label schemes. .ix is exceptionally useful when dealing with mixed positional and label based hierachical index

Panel.radd()

Panel.radd(other, axis=0) [source] Addition of series and other, element-wise (binary operator radd). Equivalent to other + panel. Parameters: other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns: Panel See also Panel.add

TimedeltaIndex.transpose()

TimedeltaIndex.transpose(*args, **kwargs) [source] return the transpose, which is by definition self

Index.take()

Index.take(indices, axis=0, allow_fill=True, fill_value=None, **kwargs) [source] return a new %(klass)s of the values selected by the indices For internal compatibility with numpy arrays. Parameters: indices : list Indices to be taken axis : int, optional The axis over which to select values, always 0. allow_fill : bool, default True fill_value : bool, default None If allow_fill=True and fill_value is not None, indices specified by -1 is regarded as NA. If Index doesn?t hold NA, raise

MultiIndex.name

MultiIndex.name = None

Panel.rpow()

Panel.rpow(other, axis=0) [source] Exponential power of series and other, element-wise (binary operator rpow). Equivalent to other ** panel. Parameters: other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns: Panel See also Panel.pow

GroupBy.sem()

GroupBy.sem(ddof=1) [source] Compute standard error of the mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex Parameters: ddof : integer, default 1 degrees of freedom See also pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby