TimedeltaIndex.is_mixed()

TimedeltaIndex.is_mixed() [source]

Panel4D.where()

Panel4D.where(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True) [source] Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters: cond : boolean NDFrame, array or callable If cond is callable, it is computed on the NDFrame and should return boolean NDFrame or array. The callable must not change input NDFrame (though pandas doesn?t check it). New in version 0.

DataFrame.to_html()

DataFrame.to_html(buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, bold_rows=True, classes=None, escape=True, max_rows=None, max_cols=None, show_dimensions=False, notebook=False, decimal='.', border=None) [source] Render a DataFrame as an HTML table. to_html-specific options: bold_rows : boolean, default TrueMake the row labels bold in the output classes : str or list or tuple,

MultiIndex.to_series()

MultiIndex.to_series(**kwargs) [source] Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index Returns: Series : dtype will be based on the type of the Index values.

pandas.set_option()

pandas.set_option(pat, value) = Sets the value of the specified option. Available options: display.[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr] display.latex.[escape, longtable, repr] display.[line_width, max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage, mpl_style, multi_sparse, notebook_repr_html, pprint_nest_depth, precision,

TimedeltaIndex.get_indexer_non_unique()

TimedeltaIndex.get_indexer_non_unique(target) [source] return an indexer suitable for taking from a non unique index return the labels in the same order as the target, and return a missing indexer into the target (missing are marked as -1 in the indexer); target must be an iterable

TimedeltaIndex.is_unique

TimedeltaIndex.is_unique = None

CategoricalIndex.asi8

CategoricalIndex.asi8 = None

MultiIndex.sort()

MultiIndex.sort(*args, **kwargs) [source]

DataFrameGroupBy.rank()

DataFrameGroupBy.rank(axis=0, method='average', numeric_only=None, na_option='keep', ascending=True, pct=False) Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values Parameters: axis: {0 or ?index?, 1 or ?columns?}, default 0 index to direct ranking method : {?average?, ?min?, ?max?, ?first?, ?dense?} average: average rank of group min: lowest rank in group max: highest rank in group first: ranks assigned