Series.ptp()

Series.ptp(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) [source] Returns the difference between the maximum value and the minimum value in the object. This is the equivalent of the numpy.ndarray method ptp. Parameters: axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsin

Series.min()

Series.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) [source] This method returns the minimum of the values in the object. If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin. Parameters: axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a

DataFrame.cumprod()

DataFrame.cumprod(axis=None, skipna=True, *args, **kwargs) [source] Return cumulative product over requested axis. Parameters: axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns: cumprod : Series

TimedeltaIndex.microseconds

TimedeltaIndex.microseconds Number of microseconds (>= 0 and less than 1 second) for each element.

DataFrame.to_xarray()

DataFrame.to_xarray() [source] Return an xarray object from the pandas object. Returns: a DataArray for a Series a Dataset for a DataFrame a DataArray for higher dims Notes See the xarray docs Examples >>> df = pd.DataFrame({'A' : [1, 1, 2], 'B' : ['foo', 'bar', 'foo'], 'C' : np.arange(4.,7)}) >>> df A B C 0 1 foo 4.0 1 1 bar 5.0 2 2 foo 6.0 >>> df.to_xarray() <xarray.Dataset> Dimensions: (i

Series.dt.daysinmonth

Series.dt.daysinmonth The number of days in the month New in version 0.16.0.

Series.set_axis()

Series.set_axis(axis, labels) [source] public verson of axis assignment

Panel.sample()

Panel.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None) [source] Returns a random sample of items from an axis of object. New in version 0.16.1. Parameters: n : int, optional Number of items from axis to return. Cannot be used with frac. Default = 1 if frac = None. frac : float, optional Fraction of axis items to return. Cannot be used with n. replace : boolean, optional Sample with or without replacement. Default = False. weights : str or ndarray

Series.nsmallest()

Series.nsmallest(*args, **kwargs) [source] Return the smallest n elements. Parameters: n : int Return this many ascending sorted values keep : {?first?, ?last?, False}, default ?first? Where there are duplicate values: - first : take the first occurrence. - last : take the last occurrence. take_last : deprecated Returns: bottom_n : Series The n smallest values in the Series, in sorted order See also Series.nlargest Notes Faster than .sort_values().head(n) for small n relative to

Series.cat.rename_categories()

Series.cat.rename_categories(*args, **kwargs) [source] Renames categories. The new categories has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Parameters: new_categories : Index-like The renamed categories. inplace : boolean (default: False) Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns: cat : Catego