Series.ravel()

Series.ravel(order='C') [source] Return the flattened underlying data as an ndarray See also numpy.ndarray.ravel

Panel.astype()

Panel.astype(dtype, copy=True, raise_on_error=True, **kwargs) [source] Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!) Parameters: dtype : data type, or dict of column name -> data type Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, ...}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame?s columns to column-specific typ

Panel4D.floordiv()

Panel4D.floordiv(other, axis=0) [source] Integer division of series and other, element-wise (binary operator floordiv). Equivalent to panel // other. Parameters: other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns: Panel4D See also Panel4D.rfloordiv

Series.str.islower()

Series.str.islower() [source] Check whether all characters in each string in the Series/Index are lowercase. Equivalent to str.islower(). Returns: is : Series/array of boolean values

Panel.dropna()

Panel.dropna(axis=0, how='any', inplace=False) [source] Drop 2D from panel, holding passed axis constant Parameters: axis : int, default 0 Axis to hold constant. E.g. axis=1 will drop major_axis entries having a certain amount of NA data how : {?all?, ?any?}, default ?any? ?any?: one or more values are NA in the DataFrame along the axis. For ?all? they all must be. inplace : bool, default False If True, do operation inplace and return None. Returns: dropped : Panel

MultiIndex.is_()

MultiIndex.is_(other) [source] More flexible, faster check like is but that works through views Note: this is not the same as Index.identical(), which checks that metadata is also the same. Parameters: other : object other object to compare against. Returns: True if both have same underlying data, False otherwise : bool

Resampler.mean()

Resampler.mean(_method='mean', *args, **kwargs) [source] Compute mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex See also pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

Series.str.rjust()

Series.str.rjust(width, fillchar=' ') [source] Filling left side of strings in the Series/Index with an additional character. Equivalent to str.rjust(). Parameters: width : int Minimum width of resulting string; additional characters will be filled with fillchar fillchar : str Additional character for filling, default is whitespace Returns: filled : Series/Index of objects

Index.get_indexer()

Index.get_indexer(target, method=None, limit=None, tolerance=None) [source] Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters: target : Index method : {None, ?pad?/?ffill?, ?backfill?/?bfill?, ?nearest?}, optional default: exact matches only. pad / ffill: find the PREVIOUS index value if no exact match. backfill / bfill: use NEXT index value if no exact match ne

DataFrame.kurt()

DataFrame.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) [source] Return unbiased kurtosis over requested axis using Fisher?s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1 Parameters: axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, coll