Panel.to_json()

Panel.to_json(path_or_buf=None, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False) [source] Convert the object to a JSON string. Note NaN?s and None will be converted to null and datetime objects will be converted to UNIX timestamps. Parameters: path_or_buf : the path or buffer to write the result string if this is None, return a StringIO of the converted string orient : string Seriesdefault is ?index? allowed valu

Panel.ge()

Panel.ge(other, axis=None) [source] Wrapper for comparison method ge

Series.bool()

Series.bool() [source] Return the bool of a single element PandasObject. This must be a boolean scalar value, either True or False. Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean

DatetimeIndex.is_year_end

DatetimeIndex.is_year_end Logical indicating if last day of year (defined by frequency)

Panel4D.to_dense()

Panel4D.to_dense() [source] Return dense representation of NDFrame (as opposed to sparse)

Series.ftype

Series.ftype return if the data is sparse|dense

Installation

The easiest way for the majority of users to install pandas is to install it as part of the Anaconda distribution, a cross platform distribution for data analysis and scientific computing. This is the recommended installation method for most users. Instructions for installing from source, PyPI, various Linux distributions, or a development version are also provided. Python version support Officially Python 2.7, 3.4, 3.5, and 3.6 Installing pandas Trying out pandas, no installation required

CategoricalIndex.strides

CategoricalIndex.strides return the strides of the underlying data

Remote Data Access

DataReader The sub-package pandas.io.data is removed in favor of a separately installable pandas-datareader package. This will allow the data modules to be independently updated to your pandas installation. The API for pandas-datareader v0.1.1 is the same as in pandas v0.16.1. (GH8961) You should replace the imports of the following: from pandas.io import data, wb With: from pandas_datareader import data, wb Google Analytics The ga module provides a wrapper for Google Analytics API to s

Series.axes

Series.axes Return a list of the row axis labels