Series.add_prefix()

Series.add_prefix(prefix) [source] Concatenate prefix string with panel items names. Parameters: prefix : string Returns: with_prefix : type of caller

DatetimeIndex.asi8

DatetimeIndex.asi8

CategoricalIndex.all()

CategoricalIndex.all(other=None) [source]

Window.mean()

Window.mean(*args, **kwargs) [source] window mean Parameters: how : string, default None (DEPRECATED) Method for down- or re-sampling Returns: same type as input See also pandas.Series.window, pandas.DataFrame.window

CategoricalIndex.copy()

CategoricalIndex.copy(name=None, deep=False, dtype=None, **kwargs) [source] Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters: name : string, optional deep : boolean, default False dtype : numpy dtype or pandas type Returns: copy : Index Notes In most cases, there should be no functional difference from using deep, but if deep is passed it will attempt to deepcopy.

Index.argmin()

Index.argmin(axis=None) [source] return a ndarray of the minimum argument indexer See also numpy.ndarray.argmin

Series.first()

Series.first(offset) [source] Convenience method for subsetting initial periods of time series data based on a date offset. Parameters: offset : string, DateOffset, dateutil.relativedelta Returns: subset : type of caller Examples ts.first(?10D?) -> First 10 days

Series.astype()

Series.astype(dtype, copy=True, raise_on_error=True, **kwargs) [source] Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!) Parameters: dtype : data type, or dict of column name -> data type Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, ...}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame?s columns to column-specific ty

DatetimeIndex.astype()

DatetimeIndex.astype(dtype, copy=True) [source] Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised. Parameters: dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returne

MultiIndex.append()

MultiIndex.append(other) [source] Append a collection of Index options together Parameters: other : Index or list/tuple of indices Returns: appended : Index