DatetimeIndex.insert()

DatetimeIndex.insert(loc, item) [source] Make new Index inserting new item at location Parameters: loc : int item : object if not either a Python datetime or a numpy integer-like, returned Index dtype will be object rather than datetime. Returns: new_index : Index

DatetimeIndex.inferred_freq

DatetimeIndex.inferred_freq = None

DatetimeIndex.indexer_at_time()

DatetimeIndex.indexer_at_time(time, asof=False) [source] Select values at particular time of day (e.g. 9:30AM) Parameters: time : datetime.time or string Returns: values_at_time : TimeSeries

DatetimeIndex.indexer_between_time()

DatetimeIndex.indexer_between_time(start_time, end_time, include_start=True, include_end=True) [source] Select values between particular times of day (e.g., 9:00-9:30AM). Return values of the index between two times. If start_time or end_time are strings then tseres.tools.to_time is used to convert to a time object. Parameters: start_time, end_time : datetime.time, str datetime.time or string in appropriate format (?%H:%M?, ?%H%M?, ?%I:%M%p?, ?%I%M%p?, ?%H:%M:%S?, ?%H%M%S?, ?%I:%M:%S%p?,

DatetimeIndex.hour

DatetimeIndex.hour The hours of the datetime

DatetimeIndex.identical()

DatetimeIndex.identical(other) [source] Similar to equals, but check that other comparable attributes are also equal

DatetimeIndex.holds_integer()

DatetimeIndex.holds_integer() [source]

DatetimeIndex.has_duplicates

DatetimeIndex.has_duplicates

DatetimeIndex.hasnans

DatetimeIndex.hasnans = None

DatetimeIndex.groupby()

DatetimeIndex.groupby(values) [source] Group the index labels by a given array of values. Parameters: values : array Values used to determine the groups. Returns: groups : dict {group name -> group labels}