DatetimeIndex.to_perioddelta()

DatetimeIndex.to_perioddelta(freq) [source] Calcuates TimedeltaIndex of difference between index values and index converted to PeriodIndex at specified freq. Used for vectorized offsets New in version 0.17.0. Parameters: freq : Period frequency Returns: y : TimedeltaIndex

Series.plot.density()

Series.plot.density(**kwds) [source] Kernel Density Estimate plot New in version 0.17.0. Parameters: **kwds : optional Keyword arguments to pass on to pandas.Series.plot(). Returns: axes : matplotlib.AxesSubplot or np.array of them

DataFrame.sum()

DataFrame.sum(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) [source] Return the sum of the values for the requested axis Parameters: axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float,

MultiIndex.summary()

MultiIndex.summary(name=None) [source]

CategoricalIndex.itemsize

CategoricalIndex.itemsize return the size of the dtype of the item of the underlying data

CategoricalIndex.is_all_dates

CategoricalIndex.is_all_dates = None

Panel.xs()

Panel.xs(key, axis=1) [source] Return slice of panel along selected axis Parameters: key : object Label axis : {?items?, ?major?, ?minor}, default 1/?major? Returns: y : ndim(self)-1 Notes xs is only for getting, not setting values. MultiIndex Slicers is a generic way to get/set values on any level or levels and is a superset of xs functionality, see MultiIndex Slicers

DataFrame.style

DataFrame.style Property returning a Styler object containing methods for building a styled HTML representation fo the DataFrame. See also pandas.formats.style.Styler

TimedeltaIndex.groupby()

TimedeltaIndex.groupby(values) [source] Group the index labels by a given array of values. Parameters: values : array Values used to determine the groups. Returns: groups : dict {group name -> group labels}

Expanding.mean()

Expanding.mean(*args, **kwargs) [source] expanding mean Parameters: how : string, default None (DEPRECATED) Method for down- or re-sampling Returns: same type as input See also pandas.Series.expanding, pandas.DataFrame.expanding