GroupBy.apply()

GroupBy.apply(func, *args, **kwargs) [source] Apply function and combine results together in an intelligent way. The split-apply-combine combination rules attempt to be as common sense based as possible. For example: case 1: group DataFrame apply aggregation function (f(chunk) -> Series) yield DataFrame, with group axis having group labels case 2: group DataFrame apply transform function ((f(chunk) -> DataFrame with same indexes) yield DataFrame with resulting chunks glued together ca

DatetimeIndex.append()

DatetimeIndex.append(other) [source] Append a collection of Index options together Parameters: other : Index or list/tuple of indices Returns: appended : Index

Series.from_array()

classmethod Series.from_array(arr, index=None, name=None, dtype=None, copy=False, fastpath=False) [source]

Index.delete()

Index.delete(loc) [source] Make new Index with passed location(-s) deleted Returns: new_index : Index

Panel.get()

Panel.get(key, default=None) [source] Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found. Parameters: key : object Returns: value : type of items contained in object

DataFrameGroupBy.count()

DataFrameGroupBy.count() [source] Compute count of group, excluding missing values

MultiIndex.sym_diff()

MultiIndex.sym_diff(*args, **kwargs) [source]

MultiIndex.delete()

MultiIndex.delete(loc) [source] Make new index with passed location deleted Returns: new_index : MultiIndex

DataFrame.insert()

DataFrame.insert(loc, column, value, allow_duplicates=False) [source] Insert column into DataFrame at specified location. If allow_duplicates is False, raises Exception if column is already contained in the DataFrame. Parameters: loc : int Must have 0 <= loc <= len(columns) column : object value : scalar, Series, or array-like

DataFrame.tz_localize()

DataFrame.tz_localize(*args, **kwargs) [source] Localize tz-naive TimeSeries to target time zone. Parameters: tz : string or pytz.timezone object axis : the axis to localize level : int, str, default None If axis ia a MultiIndex, localize a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data ambiguous : ?infer?, bool-ndarray, ?NaT?, default ?raise? ?infer? will attempt to infer fall dst-transition hours based on order bool-ndarra