CategoricalIndex.codes

CategoricalIndex.codes

Panel4D.reindex_axis()

Panel4D.reindex_axis(labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=nan) [source] Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False Parameters: labels : array-like New labels / index to conform to. Preferably an Index object to avoid duplicating data axis : {0, 1, 2, ?items?, ?major_axis?,

Series.dt.normalize()

Series.dt.normalize(*args, **kwargs) [source] Return DatetimeIndex with times to midnight. Length is unaltered Returns: normalized : DatetimeIndex

TimedeltaIndex.dtype_str

TimedeltaIndex.dtype_str = None

Panel4D.iteritems()

Panel4D.iteritems() [source] Iterate over (label, values) on info axis This is index for Series, columns for DataFrame, major_axis for Panel, and so on.

MultiIndex.is_monotonic

MultiIndex.is_monotonic alias for is_monotonic_increasing (deprecated)

MultiIndex.equal_levels()

MultiIndex.equal_levels(other) [source] Return True if the levels of both MultiIndex objects are the same

MultiIndex.is_mixed()

MultiIndex.is_mixed() [source]

CategoricalIndex.has_duplicates

CategoricalIndex.has_duplicates

MultiIndex / Advanced Indexing

This section covers indexing with a MultiIndex and more advanced indexing features. See the Indexing and Selecting Data for general indexing documentation. Warning Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See Returning a View versus Copy Warning In 0.15.0 Index has internally been refactored to no longer sub-class ndarray but instead subclass PandasObject, similarly to the