Panel4D.isnull()

Panel4D.isnull() [source] Return a boolean same-sized object indicating if the values are null. See also notnull boolean inverse of isnull

Rolling.min()

Rolling.min(*args, **kwargs) [source] rolling minimum Parameters: how : string, default ?min? (DEPRECATED) Method for down- or re-sampling Returns: same type as input See also pandas.Series.rolling, pandas.DataFrame.rolling

DataFrameGroupBy.cumsum()

DataFrameGroupBy.cumsum(axis=0, *args, **kwargs) [source] Cumulative sum for each group See also pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

Panel.cumsum()

Panel.cumsum(axis=None, skipna=True, *args, **kwargs) [source] Return cumulative sum over requested axis. Parameters: axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns: cumsum : DataFrame

MultiIndex.shift()

MultiIndex.shift(periods=1, freq=None) [source] Shift Index containing datetime objects by input number of periods and DateOffset Returns: shifted : Index

Series.cat.ordered

Series.cat.ordered Gets the ordered attribute

DataFrame.lookup()

DataFrame.lookup(row_labels, col_labels) [source] Label-based ?fancy indexing? function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair. Parameters: row_labels : sequence The row labels to use for lookup col_labels : sequence The column labels to use for lookup Notes Akin to: result = [] for row, col in zip(row_labels, col_labels): result.append(df.get_value(row, col)) Examples values : ndarray

Panel.all()

Panel.all(axis=None, bool_only=None, skipna=None, level=None, **kwargs) [source] Return whether all elements are True over requested axis Parameters: axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame bool_only : boolean, default None In

TimedeltaIndex.is_()

TimedeltaIndex.is_(other) [source] More flexible, faster check like is but that works through views Note: this is not the same as Index.identical(), which checks that metadata is also the same. Parameters: other : object other object to compare against. Returns: True if both have same underlying data, False otherwise : bool

Panel4D.to_hdf()

Panel4D.to_hdf(path_or_buf, key, **kwargs) [source] Write the contained data to an HDF5 file using HDFStore. Parameters: path_or_buf : the path (string) or HDFStore object key : string indentifier for the group in the store mode : optional, {?a?, ?w?, ?r+?}, default ?a? 'w' Write; a new file is created (an existing file with the same name would be deleted). 'a' Append; an existing file is opened for reading and writing, and if the file does not exist it is created. 'r+' It is