TimedeltaIndex.searchsorted()

TimedeltaIndex.searchsorted(key, side='left', sorter=None) [source] Find indices where elements should be inserted to maintain order. Find the indices into a sorted TimedeltaIndex self such that, if the corresponding elements in v were inserted before the indices, the order of self would be preserved. Parameters: key : array_like Values to insert into self. side : {?left?, ?right?}, optional If ?left?, the index of the first suitable location found is given. If ?right?, return the last

DatetimeIndex.nanosecond

DatetimeIndex.nanosecond The nanoseconds of the datetime

MultiIndex.get_slice_bound()

MultiIndex.get_slice_bound(label, side, kind) [source]

TimedeltaIndex.to_native_types()

TimedeltaIndex.to_native_types(slicer=None, **kwargs) [source] slice and dice then format

Panel.filter()

Panel.filter(items=None, like=None, regex=None, axis=None) [source] Subset rows or columns of dataframe according to labels in the specified index. Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index. Parameters: items : list-like List of info axis to restrict to (must not all be present) like : string Keep info axis where ?arg in col == True? regex : string (regular expression) Keep info axis with re.search(regex, col)

pandas.read_sas()

pandas.read_sas(filepath_or_buffer, format=None, index=None, encoding=None, chunksize=None, iterator=False) [source] Read SAS files stored as either XPORT or SAS7BDAT format files. Parameters: filepath_or_buffer : string or file-like object Path to the SAS file. format : string {?xport?, ?sas7bdat?} or None If None, file format is inferred. If ?xport? or ?sas7bdat?, uses the corresponding format. index : identifier of index column, defaults to None Identifier of column that should be

Panel4D.min()

Panel4D.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) [source] This method returns the minimum of the values in the object. If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin. Parameters: axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis

Series.factorize()

Series.factorize(sort=False, na_sentinel=-1) [source] Encode the object as an enumerated type or categorical variable Parameters: sort : boolean, default False Sort by values na_sentinel: int, default -1 Value to mark ?not found? Returns: labels : the indexer to the original array uniques : the unique Index

MultiIndex.fillna()

MultiIndex.fillna(value=None, downcast=None) [source] Fill NA/NaN values with the specified value Parameters: value : scalar Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string ?infer? which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible) Returns: filled : %(klass)s

DataFrameGroupBy.tshift()

DataFrameGroupBy.tshift(periods=1, freq=None, axis=0) Shift the time index, using the index?s frequency if available. Parameters: periods : int Number of periods to move, can be positive or negative freq : DateOffset, timedelta, or time rule string, default None Increment to use from the tseries module or time rule (e.g. ?EOM?) axis : int or basestring Corresponds to the axis that contains the Index Returns: shifted : NDFrame Notes If freq is not specified then tries to use the fr