TimedeltaIndex.str()

TimedeltaIndex.str() [source] Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular method. Patterned after Python?s string methods, with some inspiration from R?s stringr package. Examples >>> s.str.split('_') >>> s.str.replace('_', '')

DatetimeIndex.size

DatetimeIndex.size return the number of elements in the underlying data

DatetimeIndex.is_quarter_end

DatetimeIndex.is_quarter_end Logical indicating if last day of quarter (defined by frequency)

formats.style.Styler()

class pandas.formats.style.Styler(data, precision=None, table_styles=None, uuid=None, caption=None, table_attributes=None) [source] Helps style a DataFrame or Series according to the data with HTML and CSS. New in version 0.17.1. Warning This is a new feature and is under active development. We?ll be adding features and possibly making breaking changes in future releases. Parameters: data: Series or DataFrame precision: int precision to round floats to, defaults to pd.options.display.

IO Tools (Text, CSV, HDF5, ...)

The pandas I/O API is a set of top level reader functions accessed like pd.read_csv() that generally return a pandas object. read_csv read_excel read_hdf read_sql read_json read_msgpack (experimental) read_html read_gbq (experimental) read_stata read_sas read_clipboard read_pickle The corresponding writer functions are object methods that are accessed like df.to_csv() to_csv to_excel to_hdf to_sql to_json to_msgpack (experimental) to_html to_gbq (experimental) to_stata to_clipboard to_

pandas.describe_option()

pandas.describe_option(pat, _print_desc=False) = Prints the description for one or more registered options. Call with not arguments to get a listing for all registered options. Available options: display.[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr] display.latex.[escape, longtable, repr] display.[line_width, max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows,

pandas.eval()

pandas.eval(expr, parser='pandas', engine=None, truediv=True, local_dict=None, global_dict=None, resolvers=(), level=0, target=None, inplace=None) [source] Evaluate a Python expression as a string using various backends. The following arithmetic operations are supported: +, -, *, /, **, %, // (python engine only) along with the following boolean operations: | (or), & (and), and ~ (not). Additionally, the 'pandas' parser allows the use of and, or, and not with the same semantics as the c

pandas.crosstab()

pandas.crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, dropna=True, normalize=False) [source] Compute a simple cross-tabulation of two (or more) factors. By default computes a frequency table of the factors unless an array of values and an aggregation function are passed Parameters: index : array-like, Series, or list of arrays/Series Values to group by in the rows columns : array-like, Series, or list of arrays/Series Values to group by

DataFrame.iat

DataFrame.iat Fast integer location scalar accessor. Similarly to iloc, iat provides integer based lookups. You can also set using these indexers.

TimedeltaIndex.sym_diff()

TimedeltaIndex.sym_diff(*args, **kwargs) [source]