DatetimeIndex.freqstr

DatetimeIndex.freqstr Return the frequency object as a string if its set, otherwise None

Series.__iter__()

Series.__iter__() [source] provide iteration over the values of the Series box values if necessary

DataFrame.merge()

DataFrame.merge(right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False) [source] Merge DataFrame objects by performing a database-style join operation by columns or indexes. If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. Parameters: right : DataFrame how : {?left?,

DatetimeIndex.dtype

DatetimeIndex.dtype = None

Series.dt.month

Series.dt.month The month as January=1, December=12

MultiIndex.is_monotonic_increasing

MultiIndex.is_monotonic_increasing return if the index is monotonic increasing (only equal or increasing) values.

Series.transpose()

Series.transpose(*args, **kwargs) [source] return the transpose, which is by definition self

Series.interpolate()

Series.interpolate(method='linear', axis=0, limit=None, inplace=False, limit_direction='forward', downcast=None, **kwargs) [source] Interpolate values according to different methods. Please note that only method='linear' is supported for DataFrames/Series with a MultiIndex. Parameters: method : {?linear?, ?time?, ?index?, ?values?, ?nearest?, ?zero?, ?slinear?, ?quadratic?, ?cubic?, ?barycentric?, ?krogh?, ?polynomial?, ?spline?, ?piecewise_polynomial?, ?from_derivatives?, ?pchip?, ?akim

CategoricalIndex.to_native_types()

CategoricalIndex.to_native_types(slicer=None, **kwargs) [source] slice and dice then format

MultiIndex.is_lexsorted()

MultiIndex.is_lexsorted() [source] Return True if the labels are lexicographically sorted