Series.add_prefix()

Series.add_prefix(prefix) [source] Concatenate prefix string with panel items names. Parameters: prefix : string Returns: with_prefix : type of caller

DatetimeIndex.base

DatetimeIndex.base return the base object if the memory of the underlying data is shared

Series.dt.microsecond

Series.dt.microsecond The microseconds of the datetime

DatetimeIndex.nanosecond

DatetimeIndex.nanosecond The nanoseconds of the datetime

DatetimeIndex.is_normalized

DatetimeIndex.is_normalized = None

DataFrame.to_excel()

DataFrame.to_excel(excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True) [source] Write DataFrame to a excel sheet Parameters: excel_writer : string or ExcelWriter object File path or existing ExcelWriter sheet_name : string, default ?Sheet1? Name of sheet which will contain DataFrame na_rep : string, default ?? Missing

Series.tshift()

Series.tshift(periods=1, freq=None, axis=0) [source] Shift the time index, using the index?s frequency if available. Parameters: periods : int Number of periods to move, can be positive or negative freq : DateOffset, timedelta, or time rule string, default None Increment to use from the tseries module or time rule (e.g. ?EOM?) axis : int or basestring Corresponds to the axis that contains the Index Returns: shifted : NDFrame Notes If freq is not specified then tries to use the fre

Series.cat()

Series.cat() [source] Accessor object for categorical properties of the Series values. Be aware that assigning to categories is a inplace operation, while all methods return new categorical data per default (but can be called with inplace=True). Examples >>> s.cat.categories >>> s.cat.categories = list('abc') >>> s.cat.rename_categories(list('cab')) >>> s.cat.reorder_categories(list('cab')) >>> s.cat.add_categories(['d','e']) >>> s.cat.r

DatetimeIndex.symmetric_difference()

DatetimeIndex.symmetric_difference(other, result_name=None) [source] Compute the symmetric difference of two Index objects. It?s sorted if sorting is possible. Parameters: other : Index or array-like result_name : str Returns: symmetric_difference : Index Notes symmetric_difference contains elements that appear in either idx1 or idx2 but not both. Equivalent to the Index created by idx1.difference(idx2) | idx2.difference(idx1) with duplicates dropped. Examples >>> idx1 = Index(

Series.searchsorted()

Series.searchsorted(v, side='left', sorter=None) [source] Find indices where elements should be inserted to maintain order. Find the indices into a sorted Series self such that, if the corresponding elements in v were inserted before the indices, the order of self would be preserved. Parameters: v : array_like Values to insert into self. side : {?left?, ?right?}, optional If ?left?, the index of the first suitable location found is given. If ?right?, return the last such index. If there