DataFrame.as_matrix()

DataFrame.as_matrix(columns=None) [source] Convert the frame to its Numpy-array representation. Parameters: columns: list, optional, default:None If None, return all columns, otherwise, returns specified columns. Returns: values : ndarray If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. See also pandas.DataFrame.values Notes Return is NOT a Numpy-matrix, rather, a Numpy-array. The dtype will be a lower-common-denominat

DataFrameGroupBy.all()

DataFrameGroupBy.all(axis=None, bool_only=None, skipna=None, level=None, **kwargs) Return whether all elements are True over requested axis Parameters: axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series bool_only : boolean, default None Include only boolean c

Resampler.sum()

Resampler.sum(_method='sum', *args, **kwargs) [source] Compute sum of group values See also pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

Resampler.size()

Resampler.size(_method='size') [source] Compute group sizes See also pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

Panel.transpose()

Panel.transpose(*args, **kwargs) [source] Permute the dimensions of the Panel Parameters: args : three positional arguments: each oneof {0, 1, 2, ?items?, ?major_axis?, ?minor_axis?} copy : boolean, default False Make a copy of the underlying data. Mixed-dtype data will always result in a copy Returns: y : same as input Examples >>> p.transpose(2, 0, 1) >>> p.transpose(2, 0, 1, copy=True)

Panel.tz_convert()

Panel.tz_convert(tz, axis=0, level=None, copy=True) [source] Convert tz-aware axis to target time zone. Parameters: tz : string or pytz.timezone object axis : the axis to convert level : int, str, default None If axis ia a MultiIndex, convert a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data Raises: TypeError If the axis is tz-naive.

Series.dt.minute

Series.dt.minute The minutes of the datetime

MultiIndex.value_counts()

MultiIndex.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True) [source] Returns object containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters: normalize : boolean, default False If True then the object returned will contain the relative frequencies of the unique values. sort : boolean, default True Sort by values ascen

Reshaping and Pivot Tables

Reshaping by pivoting DataFrame objects Data is often stored in CSV files or databases in so-called ?stacked? or ?record? format: In [1]: df Out[1]: date variable value 0 2000-01-03 A 0.469112 1 2000-01-04 A -0.282863 2 2000-01-05 A -1.509059 3 2000-01-03 B -1.135632 4 2000-01-04 B 1.212112 5 2000-01-05 B -0.173215 6 2000-01-03 C 0.119209 7 2000-01-04 C -1.044236 8 2000-01-05 C -0.861849 9 2000-01-03

Series.str.index()

Series.str.index(sub, start=0, end=None) [source] Return lowest indexes in each strings where the substring is fully contained between [start:end]. This is the same as str.find except instead of returning -1, it raises a ValueError when the substring is not found. Equivalent to standard str.index. Parameters: sub : str Substring being searched start : int Left edge index end : int Right edge index Returns: found : Series/Index of objects See also rindex Return highest indexes