Reshaping by pivoting DataFrame objects
Data is often stored in CSV files or databases in so-called ?stacked? or ?record? format:
In [1]: df Out[1]: date variable value 0 2000-01-03 A 0.469112 1 2000-01-04 A -0.282863 2 2000-01-05 A -1.509059 3 2000-01-03 B -1.135632 4 2000-01-04 B 1.212112 5 2000-01-05 B -0.173215 6 2000-01-03 C 0.119209 7 2000-01-04 C -1.044236 8 2000-01-05 C -0.861849 9 2000-01-03 D -2.104569 10 2000-01-04 D -0.494929 11 2000-01-05 D 1.071804
For the curious here is how the above DataFrame was created:
import pandas.util.testing as tm; tm.N = 3 def unpivot(frame): N, K = frame.shape data = {'value' : frame.values.ravel('F'), 'variable' : np.asarray(frame.columns).repeat(N), 'date' : np.tile(np.asarray(frame.index), K)} return pd.DataFrame(data, columns=['date', 'variable', 'value']) df = unpivot(tm.makeTimeDataFrame())
To select out everything for variable A
we could do:
In [2]: df[df['variable'] == 'A'] Out[2]: date variable value 0 2000-01-03 A 0.469112 1 2000-01-04 A -0.282863 2 2000-01-05 A -1.509059
But suppose we wish to do time series operations with the variables. A better representation would be where the columns
are the unique variables and an index
of dates identifies individual observations. To reshape the data into this form, use the pivot
function:
In [3]: df.pivot(index='date', columns='variable', values='value') Out[3]: variable A B C D date 2000-01-03 0.469112 -1.135632 0.119209 -2.104569 2000-01-04 -0.282863 1.212112 -1.044236 -0.494929 2000-01-05 -1.509059 -0.173215 -0.861849 1.071804
If the values
argument is omitted, and the input DataFrame has more than one column of values which are not used as column or index inputs to pivot
, then the resulting ?pivoted? DataFrame will have hierarchical columns whose topmost level indicates the respective value column:
In [4]: df['value2'] = df['value'] * 2 In [5]: pivoted = df.pivot('date', 'variable') In [6]: pivoted Out[6]: value value2 \ variable A B C D A B date 2000-01-03 0.469112 -1.135632 0.119209 -2.104569 0.938225 -2.271265 2000-01-04 -0.282863 1.212112 -1.044236 -0.494929 -0.565727 2.424224 2000-01-05 -1.509059 -0.173215 -0.861849 1.071804 -3.018117 -0.346429 variable C D date 2000-01-03 0.238417 -4.209138 2000-01-04 -2.088472 -0.989859 2000-01-05 -1.723698 2.143608
You of course can then select subsets from the pivoted DataFrame:
In [7]: pivoted['value2'] Out[7]: variable A B C D date 2000-01-03 0.938225 -2.271265 0.238417 -4.209138 2000-01-04 -0.565727 2.424224 -2.088472 -0.989859 2000-01-05 -3.018117 -0.346429 -1.723698 2.143608
Note that this returns a view on the underlying data in the case where the data are homogeneously-typed.
Reshaping by stacking and unstacking
Closely related to the pivot
function are the related stack
and unstack
functions currently available on Series and DataFrame. These functions are designed to work together with MultiIndex
objects (see the section on hierarchical indexing). Here are essentially what these functions do:
-
stack
: ?pivot? a level of the (possibly hierarchical) column labels, returning a DataFrame with an index with a new inner-most level of row labels. -
unstack
: inverse operation fromstack
: ?pivot? a level of the (possibly hierarchical) row index to the column axis, producing a reshaped DataFrame with a new inner-most level of column labels.
The clearest way to explain is by example. Let?s take a prior example data set from the hierarchical indexing section:
In [8]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz', ...: 'foo', 'foo', 'qux', 'qux'], ...: ['one', 'two', 'one', 'two', ...: 'one', 'two', 'one', 'two']])) ...: In [9]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) In [10]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B']) In [11]: df2 = df[:4] In [12]: df2 Out[12]: A B first second bar one 0.721555 -0.706771 two -1.039575 0.271860 baz one -0.424972 0.567020 two 0.276232 -1.087401
The stack
function ?compresses? a level in the DataFrame?s columns to produce either:
- A Series, in the case of a simple column Index
- A DataFrame, in the case of a
MultiIndex
in the columns
If the columns have a MultiIndex
, you can choose which level to stack. The stacked level becomes the new lowest level in a MultiIndex
on the columns:
In [13]: stacked = df2.stack() In [14]: stacked Out[14]: first second bar one A 0.721555 B -0.706771 two A -1.039575 B 0.271860 baz one A -0.424972 B 0.567020 two A 0.276232 B -1.087401 dtype: float64
With a ?stacked? DataFrame or Series (having a MultiIndex
as the index
), the inverse operation of stack
is unstack
, which by default unstacks the last level:
In [15]: stacked.unstack() Out[15]: A B first second bar one 0.721555 -0.706771 two -1.039575 0.271860 baz one -0.424972 0.567020 two 0.276232 -1.087401 In [16]: stacked.unstack(1) Out[16]: second one two first bar A 0.721555 -1.039575 B -0.706771 0.271860 baz A -0.424972 0.276232 B 0.567020 -1.087401 In [17]: stacked.unstack(0) Out[17]: first bar baz second one A 0.721555 -0.424972 B -0.706771 0.567020 two A -1.039575 0.276232 B 0.271860 -1.087401
If the indexes have names, you can use the level names instead of specifying the level numbers:
In [18]: stacked.unstack('second') Out[18]: second one two first bar A 0.721555 -1.039575 B -0.706771 0.271860 baz A -0.424972 0.276232 B 0.567020 -1.087401
Notice that the stack
and unstack
methods implicitly sort the index levels involved. Hence a call to stack
and then unstack
, or viceversa, will result in a sorted copy of the original DataFrame or Series:
In [19]: index = pd.MultiIndex.from_product([[2,1], ['a', 'b']]) In [20]: df = pd.DataFrame(np.random.randn(4), index=index, columns=['A']) In [21]: df Out[21]: A 2 a -0.370647 b -1.157892 1 a -1.344312 b 0.844885 In [22]: all(df.unstack().stack() == df.sort_index()) Out[22]: True
while the above code will raise a TypeError
if the call to sort_index
is removed.
Multiple Levels
You may also stack or unstack more than one level at a time by passing a list of levels, in which case the end result is as if each level in the list were processed individually.
In [23]: columns = pd.MultiIndex.from_tuples([ ....: ('A', 'cat', 'long'), ('B', 'cat', 'long'), ....: ('A', 'dog', 'short'), ('B', 'dog', 'short') ....: ], ....: names=['exp', 'animal', 'hair_length'] ....: ) ....: In [24]: df = pd.DataFrame(np.random.randn(4, 4), columns=columns) In [25]: df Out[25]: exp A B A B animal cat cat dog dog hair_length long long short short 0 1.075770 -0.109050 1.643563 -1.469388 1 0.357021 -0.674600 -1.776904 -0.968914 2 -1.294524 0.413738 0.276662 -0.472035 3 -0.013960 -0.362543 -0.006154 -0.923061 In [26]: df.stack(level=['animal', 'hair_length']) Out[26]: exp A B animal hair_length 0 cat long 1.075770 -0.109050 dog short 1.643563 -1.469388 1 cat long 0.357021 -0.674600 dog short -1.776904 -0.968914 2 cat long -1.294524 0.413738 dog short 0.276662 -0.472035 3 cat long -0.013960 -0.362543 dog short -0.006154 -0.923061
The list of levels can contain either level names or level numbers (but not a mixture of the two).
# df.stack(level=['animal', 'hair_length']) # from above is equivalent to: In [27]: df.stack(level=[1, 2]) Out[27]: exp A B animal hair_length 0 cat long 1.075770 -0.109050 dog short 1.643563 -1.469388 1 cat long 0.357021 -0.674600 dog short -1.776904 -0.968914 2 cat long -1.294524 0.413738 dog short 0.276662 -0.472035 3 cat long -0.013960 -0.362543 dog short -0.006154 -0.923061
Missing Data
These functions are intelligent about handling missing data and do not expect each subgroup within the hierarchical index to have the same set of labels. They also can handle the index being unsorted (but you can make it sorted by calling sort_index
, of course). Here is a more complex example:
In [28]: columns = pd.MultiIndex.from_tuples([('A', 'cat'), ('B', 'dog'), ....: ('B', 'cat'), ('A', 'dog')], ....: names=['exp', 'animal']) ....: In [29]: index = pd.MultiIndex.from_product([('bar', 'baz', 'foo', 'qux'), ....: ('one', 'two')], ....: names=['first', 'second']) ....: In [30]: df = pd.DataFrame(np.random.randn(8, 4), index=index, columns=columns) In [31]: df2 = df.ix[[0, 1, 2, 4, 5, 7]] In [32]: df2 Out[32]: exp A B A animal cat dog cat dog first second bar one 0.895717 0.805244 -1.206412 2.565646 two 1.431256 1.340309 -1.170299 -0.226169 baz one 0.410835 0.813850 0.132003 -0.827317 foo one -1.413681 1.607920 1.024180 0.569605 two 0.875906 -2.211372 0.974466 -2.006747 qux two -1.226825 0.769804 -1.281247 -0.727707
As mentioned above, stack
can be called with a level
argument to select which level in the columns to stack:
In [33]: df2.stack('exp') Out[33]: animal cat dog first second exp bar one A 0.895717 2.565646 B -1.206412 0.805244 two A 1.431256 -0.226169 B -1.170299 1.340309 baz one A 0.410835 -0.827317 B 0.132003 0.813850 foo one A -1.413681 0.569605 B 1.024180 1.607920 two A 0.875906 -2.006747 B 0.974466 -2.211372 qux two A -1.226825 -0.727707 B -1.281247 0.769804 In [34]: df2.stack('animal') Out[34]: exp A B first second animal bar one cat 0.895717 -1.206412 dog 2.565646 0.805244 two cat 1.431256 -1.170299 dog -0.226169 1.340309 baz one cat 0.410835 0.132003 dog -0.827317 0.813850 foo one cat -1.413681 1.024180 dog 0.569605 1.607920 two cat 0.875906 0.974466 dog -2.006747 -2.211372 qux two cat -1.226825 -1.281247 dog -0.727707 0.769804
Unstacking can result in missing values if subgroups do not have the same set of labels. By default, missing values will be replaced with the default fill value for that data type, NaN
for float, NaT
for datetimelike, etc. For integer types, by default data will converted to float and missing values will be set to NaN
.
In [35]: df3 = df.iloc[[0, 1, 4, 7], [1, 2]] In [36]: df3 Out[36]: exp B animal dog cat first second bar one 0.805244 -1.206412 two 1.340309 -1.170299 foo one 1.607920 1.024180 qux two 0.769804 -1.281247 In [37]: df3.unstack() Out[37]: exp B animal dog cat second one two one two first bar 0.805244 1.340309 -1.206412 -1.170299 foo 1.607920 NaN 1.024180 NaN qux NaN 0.769804 NaN -1.281247
Alternatively, unstack takes an optional fill_value
argument, for specifying the value of missing data.
In [38]: df3.unstack(fill_value=-1e9) Out[38]: exp B animal dog cat second one two one two first bar 8.052440e-01 1.340309e+00 -1.206412e+00 -1.170299e+00 foo 1.607920e+00 -1.000000e+09 1.024180e+00 -1.000000e+09 qux -1.000000e+09 7.698036e-01 -1.000000e+09 -1.281247e+00
With a MultiIndex
Unstacking when the columns are a MultiIndex
is also careful about doing the right thing:
In [39]: df[:3].unstack(0) Out[39]: exp A B A \ animal cat dog cat dog first bar baz bar baz bar baz bar second one 0.895717 0.410835 0.805244 0.81385 -1.206412 0.132003 2.565646 two 1.431256 NaN 1.340309 NaN -1.170299 NaN -0.226169 exp animal first baz second one -0.827317 two NaN In [40]: df2.unstack(1) Out[40]: exp A B A \ animal cat dog cat dog second one two one two one two one first bar 0.895717 1.431256 0.805244 1.340309 -1.206412 -1.170299 2.565646 baz 0.410835 NaN 0.813850 NaN 0.132003 NaN -0.827317 foo -1.413681 0.875906 1.607920 -2.211372 1.024180 0.974466 0.569605 qux NaN -1.226825 NaN 0.769804 NaN -1.281247 NaN exp animal second two first bar -0.226169 baz NaN foo -2.006747 qux -0.727707
Reshaping by Melt
The melt()
function is useful to massage a DataFrame into a format where one or more columns are identifier variables, while all other columns, considered measured variables, are ?unpivoted? to the row axis, leaving just two non-identifier columns, ?variable? and ?value?. The names of those columns can be customized by supplying the var_name
and value_name
parameters.
For instance,
In [41]: cheese = pd.DataFrame({'first' : ['John', 'Mary'], ....: 'last' : ['Doe', 'Bo'], ....: 'height' : [5.5, 6.0], ....: 'weight' : [130, 150]}) ....: In [42]: cheese Out[42]: first height last weight 0 John 5.5 Doe 130 1 Mary 6.0 Bo 150 In [43]: pd.melt(cheese, id_vars=['first', 'last']) Out[43]: first last variable value 0 John Doe height 5.5 1 Mary Bo height 6.0 2 John Doe weight 130.0 3 Mary Bo weight 150.0 In [44]: pd.melt(cheese, id_vars=['first', 'last'], var_name='quantity') Out[44]: first last quantity value 0 John Doe height 5.5 1 Mary Bo height 6.0 2 John Doe weight 130.0 3 Mary Bo weight 150.0
Another way to transform is to use the wide_to_long
panel data convenience function.
In [45]: dft = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"}, ....: "A1980" : {0 : "d", 1 : "e", 2 : "f"}, ....: "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7}, ....: "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1}, ....: "X" : dict(zip(range(3), np.random.randn(3))) ....: }) ....: In [46]: dft["id"] = dft.index In [47]: dft Out[47]: A1970 A1980 B1970 B1980 X id 0 a d 2.5 3.2 -0.121306 0 1 b e 1.2 1.3 -0.097883 1 2 c f 0.7 0.1 0.695775 2 In [48]: pd.wide_to_long(dft, ["A", "B"], i="id", j="year") Out[48]: X A B id year 0 1970 -0.121306 a 2.5 1 1970 -0.097883 b 1.2 2 1970 0.695775 c 0.7 0 1980 -0.121306 d 3.2 1 1980 -0.097883 e 1.3 2 1980 0.695775 f 0.1
Combining with stats and GroupBy
It should be no shock that combining pivot
/ stack
/ unstack
with GroupBy and the basic Series and DataFrame statistical functions can produce some very expressive and fast data manipulations.
In [49]: df Out[49]: exp A B A animal cat dog cat dog first second bar one 0.895717 0.805244 -1.206412 2.565646 two 1.431256 1.340309 -1.170299 -0.226169 baz one 0.410835 0.813850 0.132003 -0.827317 two -0.076467 -1.187678 1.130127 -1.436737 foo one -1.413681 1.607920 1.024180 0.569605 two 0.875906 -2.211372 0.974466 -2.006747 qux one -0.410001 -0.078638 0.545952 -1.219217 two -1.226825 0.769804 -1.281247 -0.727707 In [50]: df.stack().mean(1).unstack() Out[50]: animal cat dog first second bar one -0.155347 1.685445 two 0.130479 0.557070 baz one 0.271419 -0.006733 two 0.526830 -1.312207 foo one -0.194750 1.088763 two 0.925186 -2.109060 qux one 0.067976 -0.648927 two -1.254036 0.021048 # same result, another way In [51]: df.groupby(level=1, axis=1).mean() Out[51]: animal cat dog first second bar one -0.155347 1.685445 two 0.130479 0.557070 baz one 0.271419 -0.006733 two 0.526830 -1.312207 foo one -0.194750 1.088763 two 0.925186 -2.109060 qux one 0.067976 -0.648927 two -1.254036 0.021048 In [52]: df.stack().groupby(level=1).mean() Out[52]: exp A B second one 0.071448 0.455513 two -0.424186 -0.204486 In [53]: df.mean().unstack(0) Out[53]: exp A B animal cat 0.060843 0.018596 dog -0.413580 0.232430
Pivot tables
The function pandas.pivot_table
can be used to create spreadsheet-style pivot tables. See the cookbook for some advanced strategies
It takes a number of arguments
-
data
: A DataFrame object -
values
: a column or a list of columns to aggregate -
index
: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values. -
columns
: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values. -
aggfunc
: function to use for aggregation, defaulting tonumpy.mean
Consider a data set like this:
In [54]: import datetime In [55]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 6, ....: 'B': ['A', 'B', 'C'] * 8, ....: 'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4, ....: 'D': np.random.randn(24), ....: 'E': np.random.randn(24), ....: 'F': [datetime.datetime(2013, i, 1) for i in range(1, 13)] + ....: [datetime.datetime(2013, i, 15) for i in range(1, 13)]}) ....: In [56]: df Out[56]: A B C D E F 0 one A foo 0.341734 -0.317441 2013-01-01 1 one B foo 0.959726 -1.236269 2013-02-01 2 two C foo -1.110336 0.896171 2013-03-01 3 three A bar -0.619976 -0.487602 2013-04-01 4 one B bar 0.149748 -0.082240 2013-05-01 5 one C bar -0.732339 -2.182937 2013-06-01 6 two A foo 0.687738 0.380396 2013-07-01 .. ... .. ... ... ... ... 17 one C bar -0.345352 0.206053 2013-06-15 18 two A foo 1.314232 -0.251905 2013-07-15 19 three B foo 0.690579 -2.213588 2013-08-15 20 one C foo 0.995761 1.063327 2013-09-15 21 one A bar 2.396780 1.266143 2013-10-15 22 two B bar 0.014871 0.299368 2013-11-15 23 three C bar 3.357427 -0.863838 2013-12-15 [24 rows x 6 columns]
We can produce pivot tables from this data very easily:
In [57]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C']) Out[57]: C bar foo A B one A 1.120915 -0.514058 B -0.338421 0.002759 C -0.538846 0.699535 three A -1.181568 NaN B NaN 0.433512 C 0.588783 NaN two A NaN 1.000985 B 0.158248 NaN C NaN 0.176180 In [58]: pd.pivot_table(df, values='D', index=['B'], columns=['A', 'C'], aggfunc=np.sum) Out[58]: A one three two C bar foo bar foo bar foo B A 2.241830 -1.028115 -2.363137 NaN NaN 2.001971 B -0.676843 0.005518 NaN 0.867024 0.316495 NaN C -1.077692 1.399070 1.177566 NaN NaN 0.352360 In [59]: pd.pivot_table(df, values=['D','E'], index=['B'], columns=['A', 'C'], aggfunc=np.sum) Out[59]: D E \ A one three two one C bar foo bar foo bar foo bar B A 2.241830 -1.028115 -2.363137 NaN NaN 2.001971 2.786113 B -0.676843 0.005518 NaN 0.867024 0.316495 NaN 1.368280 C -1.077692 1.399070 1.177566 NaN NaN 0.352360 -1.976883 A three two C foo bar foo bar foo B A -0.043211 1.922577 NaN NaN 0.128491 B -1.103384 NaN -2.128743 -0.194294 NaN C 1.495717 -0.263660 NaN NaN 0.872482
The result object is a DataFrame having potentially hierarchical indexes on the rows and columns. If the values
column name is not given, the pivot table will include all of the data that can be aggregated in an additional level of hierarchy in the columns:
In [60]: pd.pivot_table(df, index=['A', 'B'], columns=['C']) Out[60]: D E C bar foo bar foo A B one A 1.120915 -0.514058 1.393057 -0.021605 B -0.338421 0.002759 0.684140 -0.551692 C -0.538846 0.699535 -0.988442 0.747859 three A -1.181568 NaN 0.961289 NaN B NaN 0.433512 NaN -1.064372 C 0.588783 NaN -0.131830 NaN two A NaN 1.000985 NaN 0.064245 B 0.158248 NaN -0.097147 NaN C NaN 0.176180 NaN 0.436241
Also, you can use Grouper
for index
and columns
keywords. For detail of Grouper
, see Grouping with a Grouper specification.
In [61]: pd.pivot_table(df, values='D', index=pd.Grouper(freq='M', key='F'), columns='C') Out[61]: C bar foo F 2013-01-31 NaN -0.514058 2013-02-28 NaN 0.002759 2013-03-31 NaN 0.176180 2013-04-30 -1.181568 NaN 2013-05-31 -0.338421 NaN 2013-06-30 -0.538846 NaN 2013-07-31 NaN 1.000985 2013-08-31 NaN 0.433512 2013-09-30 NaN 0.699535 2013-10-31 1.120915 NaN 2013-11-30 0.158248 NaN 2013-12-31 0.588783 NaN
You can render a nice output of the table omitting the missing values by calling to_string
if you wish:
In [62]: table = pd.pivot_table(df, index=['A', 'B'], columns=['C']) In [63]: print(table.to_string(na_rep='')) D E C bar foo bar foo A B one A 1.120915 -0.514058 1.393057 -0.021605 B -0.338421 0.002759 0.684140 -0.551692 C -0.538846 0.699535 -0.988442 0.747859 three A -1.181568 0.961289 B 0.433512 -1.064372 C 0.588783 -0.131830 two A 1.000985 0.064245 B 0.158248 -0.097147 C 0.176180 0.436241
Note that pivot_table
is also available as an instance method on DataFrame.
Adding margins
If you pass margins=True
to pivot_table
, special All
columns and rows will be added with partial group aggregates across the categories on the rows and columns:
In [64]: df.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.std) Out[64]: D E C bar foo All bar foo All A B one A 1.804346 1.210272 1.569879 0.179483 0.418374 0.858005 B 0.690376 1.353355 0.898998 1.083825 0.968138 1.101401 C 0.273641 0.418926 0.771139 1.689271 0.446140 1.422136 three A 0.794212 NaN 0.794212 2.049040 NaN 2.049040 B NaN 0.363548 0.363548 NaN 1.625237 1.625237 C 3.915454 NaN 3.915454 1.035215 NaN 1.035215 two A NaN 0.442998 0.442998 NaN 0.447104 0.447104 B 0.202765 NaN 0.202765 0.560757 NaN 0.560757 C NaN 1.819408 1.819408 NaN 0.650439 0.650439 All 1.556686 0.952552 1.246608 1.250924 0.899904 1.059389
Cross tabulations
Use the crosstab
function to compute a cross-tabulation of two (or more) factors. By default crosstab
computes a frequency table of the factors unless an array of values and an aggregation function are passed.
It takes a number of arguments
-
index
: array-like, values to group by in the rows -
columns
: array-like, values to group by in the columns -
values
: array-like, optional, array of values to aggregate according to the factors -
aggfunc
: function, optional, If no values array is passed, computes a frequency table -
rownames
: sequence, defaultNone
, must match number of row arrays passed -
colnames
: sequence, defaultNone
, if passed, must match number of column arrays passed -
margins
: boolean, defaultFalse
, Add row/column margins (subtotals) -
normalize
: boolean, {?all?, ?index?, ?columns?}, or {0,1}, defaultFalse
. Normalize by dividing all values by the sum of values.
Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified
For example:
In [65]: foo, bar, dull, shiny, one, two = 'foo', 'bar', 'dull', 'shiny', 'one', 'two' In [66]: a = np.array([foo, foo, bar, bar, foo, foo], dtype=object) In [67]: b = np.array([one, one, two, one, two, one], dtype=object) In [68]: c = np.array([dull, dull, shiny, dull, dull, shiny], dtype=object) In [69]: pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c']) Out[69]: b one two c dull shiny dull shiny a bar 1 0 0 1 foo 2 1 1 0
If crosstab
receives only two Series, it will provide a frequency table.
In [70]: df = pd.DataFrame({'A': [1, 2, 2, 2, 2], 'B': [3, 3, 4, 4, 4], ....: 'C': [1, 1, np.nan, 1, 1]}) ....: In [71]: df Out[71]: A B C 0 1 3 1.0 1 2 3 1.0 2 2 4 NaN 3 2 4 1.0 4 2 4 1.0 In [72]: pd.crosstab(df.A, df.B) Out[72]: B 3 4 A 1 1 0 2 1 3
Any input passed containing Categorical
data will have all of its categories included in the cross-tabulation, even if the actual data does not contain any instances of a particular category.
In [73]: foo = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c']) In [74]: bar = pd.Categorical(['d', 'e'], categories=['d', 'e', 'f']) In [75]: pd.crosstab(foo, bar) Out[75]: col_0 d e f row_0 a 1 0 0 b 0 1 0 c 0 0 0
Normalization
New in version 0.18.1.
Frequency tables can also be normalized to show percentages rather than counts using the normalize
argument:
In [76]: pd.crosstab(df.A, df.B, normalize=True) Out[76]: B 3 4 A 1 0.2 0.0 2 0.2 0.6
normalize
can also normalize values within each row or within each column:
In [77]: pd.crosstab(df.A, df.B, normalize='columns') Out[77]: B 3 4 A 1 0.5 0.0 2 0.5 1.0
crosstab
can also be passed a third Series and an aggregation function (aggfunc
) that will be applied to the values of the third Series within each group defined by the first two Series:
In [78]: pd.crosstab(df.A, df.B, values=df.C, aggfunc=np.sum) Out[78]: B 3 4 A 1 1.0 NaN 2 1.0 2.0
Adding Margins
Finally, one can also add margins or normalize this output.
In [79]: pd.crosstab(df.A, df.B, values=df.C, aggfunc=np.sum, normalize=True, ....: margins=True) ....: Out[79]: B 3 4 All A 1 0.25 0.0 0.25 2 0.25 0.5 0.75 All 0.50 0.5 1.00
Tiling
The cut
function computes groupings for the values of the input array and is often used to transform continuous variables to discrete or categorical variables:
In [80]: ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60]) In [81]: pd.cut(ages, bins=3) Out[81]: [(9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (26.667, 43.333], (43.333, 60], (43.333, 60]] Categories (3, object): [(9.95, 26.667] < (26.667, 43.333] < (43.333, 60]]
If the bins
keyword is an integer, then equal-width bins are formed. Alternatively we can specify custom bin-edges:
In [82]: pd.cut(ages, bins=[0, 18, 35, 70]) Out[82]: [(0, 18], (0, 18], (0, 18], (0, 18], (18, 35], (18, 35], (18, 35], (35, 70], (35, 70]] Categories (3, object): [(0, 18] < (18, 35] < (35, 70]]
Computing indicator / dummy variables
To convert a categorical variable into a ?dummy? or ?indicator? DataFrame, for example a column in a DataFrame (a Series) which has k
distinct values, can derive a DataFrame containing k
columns of 1s and 0s:
In [83]: df = pd.DataFrame({'key': list('bbacab'), 'data1': range(6)}) In [84]: pd.get_dummies(df['key']) Out[84]: a b c 0 0 1 0 1 0 1 0 2 1 0 0 3 0 0 1 4 1 0 0 5 0 1 0
Sometimes it?s useful to prefix the column names, for example when merging the result with the original DataFrame:
In [85]: dummies = pd.get_dummies(df['key'], prefix='key') In [86]: dummies Out[86]: key_a key_b key_c 0 0 1 0 1 0 1 0 2 1 0 0 3 0 0 1 4 1 0 0 5 0 1 0 In [87]: df[['data1']].join(dummies) Out[87]: data1 key_a key_b key_c 0 0 0 1 0 1 1 0 1 0 2 2 1 0 0 3 3 0 0 1 4 4 1 0 0 5 5 0 1 0
This function is often used along with discretization functions like cut
:
In [88]: values = np.random.randn(10) In [89]: values Out[89]: array([ 0.4082, -1.0481, -0.0257, -0.9884, 0.0941, 1.2627, 1.29 , 0.0824, -0.0558, 0.5366]) In [90]: bins = [0, 0.2, 0.4, 0.6, 0.8, 1] In [91]: pd.get_dummies(pd.cut(values, bins)) Out[91]: (0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1] 0 0 0 1 0 0 1 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 4 1 0 0 0 0 5 0 0 0 0 0 6 0 0 0 0 0 7 1 0 0 0 0 8 0 0 0 0 0 9 0 0 1 0 0
See also Series.str.get_dummies
.
New in version 0.15.0.
get_dummies()
also accepts a DataFrame. By default all categorical variables (categorical in the statistical sense, those with object
or categorical
dtype) are encoded as dummy variables.
In [92]: df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'], ....: 'C': [1, 2, 3]}) ....: In [93]: pd.get_dummies(df) Out[93]: C A_a A_b B_b B_c 0 1 1 0 0 1 1 2 0 1 0 1 2 3 1 0 1 0
All non-object columns are included untouched in the output.
You can control the columns that are encoded with the columns
keyword.
In [94]: pd.get_dummies(df, columns=['A']) Out[94]: B C A_a A_b 0 c 1 1 0 1 c 2 0 1 2 b 3 1 0
Notice that the B
column is still included in the output, it just hasn?t been encoded. You can drop B
before calling get_dummies
if you don?t want to include it in the output.
As with the Series version, you can pass values for the prefix
and prefix_sep
. By default the column name is used as the prefix, and ?_? as the prefix separator. You can specify prefix
and prefix_sep
in 3 ways
- string: Use the same value for
prefix
orprefix_sep
for each column to be encoded - list: Must be the same length as the number of columns being encoded.
- dict: Mapping column name to prefix
In [95]: simple = pd.get_dummies(df, prefix='new_prefix') In [96]: simple Out[96]: C new_prefix_a new_prefix_b new_prefix_b new_prefix_c 0 1 1 0 0 1 1 2 0 1 0 1 2 3 1 0 1 0 In [97]: from_list = pd.get_dummies(df, prefix=['from_A', 'from_B']) In [98]: from_list Out[98]: C from_A_a from_A_b from_B_b from_B_c 0 1 1 0 0 1 1 2 0 1 0 1 2 3 1 0 1 0 In [99]: from_dict = pd.get_dummies(df, prefix={'B': 'from_B', 'A': 'from_A'}) In [100]: from_dict Out[100]: C from_A_a from_A_b from_B_b from_B_c 0 1 1 0 0 1 1 2 0 1 0 1 2 3 1 0 1 0
New in version 0.18.0.
Sometimes it will be useful to only keep k-1 levels of a categorical variable to avoid collinearity when feeding the result to statistical models. You can switch to this mode by turn on drop_first
.
In [101]: s = pd.Series(list('abcaa')) In [102]: pd.get_dummies(s) Out[102]: a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 4 1 0 0 In [103]: pd.get_dummies(s, drop_first=True) Out[103]: b c 0 0 0 1 1 0 2 0 1 3 0 0 4 0 0
When a column contains only one level, it will be omitted in the result.
In [104]: df = pd.DataFrame({'A':list('aaaaa'),'B':list('ababc')}) In [105]: pd.get_dummies(df) Out[105]: A_a B_a B_b B_c 0 1 1 0 0 1 1 0 1 0 2 1 1 0 0 3 1 0 1 0 4 1 0 0 1 In [106]: pd.get_dummies(df, drop_first=True) Out[106]: B_b B_c 0 0 0 1 1 0 2 0 0 3 1 0 4 0 1
Factorizing values
To encode 1-d values as an enumerated type use factorize
:
In [107]: x = pd.Series(['A', 'A', np.nan, 'B', 3.14, np.inf]) In [108]: x Out[108]: 0 A 1 A 2 NaN 3 B 4 3.14 5 inf dtype: object In [109]: labels, uniques = pd.factorize(x) In [110]: labels Out[110]: array([ 0, 0, -1, 1, 2, 3]) In [111]: uniques Out[111]: Index([u'A', u'B', 3.14, inf], dtype='object')
Note that factorize
is similar to numpy.unique
, but differs in its handling of NaN:
Note
The following numpy.unique
will fail under Python 3 with a TypeError
because of an ordering bug. See also Here
In [112]: pd.factorize(x, sort=True) Out[112]: (array([ 2, 2, -1, 3, 0, 1]), Index([3.14, inf, u'A', u'B'], dtype='object')) In [113]: np.unique(x, return_inverse=True)[::-1] Out[113]: (array([3, 3, 0, 4, 1, 2]), array([nan, 3.14, inf, 'A', 'B'], dtype=object))
Note
If you just want to handle one column as a categorical variable (like R?s factor), you can use df["cat_col"] = pd.Categorical(df["col"])
or df["cat_col"] = df["col"].astype("category")
. For full docs on Categorical
, see the Categorical introduction and the API documentation. This feature was introduced in version 0.15.
Please login to continue.