DataFrame.mode()

DataFrame.mode(axis=0, numeric_only=False) [source] Gets the mode(s) of each element along the axis selected. Empty if nothing has 2+ occurrences. Adds a row for each mode per label, fills in gaps with nan. Note that there could be multiple values returned for the selected axis (when more than one item share the maximum frequency), which is the reason why a dataframe is returned. If you want to impute missing values with the mode in a dataframe df, you can just do this: df.fillna(df.mode().

DataFrame.min()

DataFrame.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) [source] This method returns the minimum of the values in the object. If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin. Parameters: axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical

DataFrame.merge()

DataFrame.merge(right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False) [source] Merge DataFrame objects by performing a database-style join operation by columns or indexes. If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. Parameters: right : DataFrame how : {?left?,

DataFrame.memory_usage()

DataFrame.memory_usage(index=True, deep=False) [source] Memory usage of DataFrame columns. Parameters: index : bool Specifies whether to include memory usage of DataFrame?s index in returned Series. If index=True (default is False) the first index of the Series is Index. deep : bool Introspect the data deeply, interrogate object dtypes for system-level memory consumption Returns: sizes : Series A series with column names as index and memory usage of columns with units of bytes. S

DataFrame.mean()

DataFrame.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) [source] Return the mean of the values for the requested axis Parameters: axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only floa

DataFrame.max()

DataFrame.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) [source] This method returns the maximum of the values in the object. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax. Parameters: axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical

DataFrame.median()

DataFrame.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) [source] Return the median of the values for the requested axis Parameters: axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only

DataFrame.mad()

DataFrame.mad(axis=None, skipna=None, level=None) [source] Return the mean absolute deviation of the values for the requested axis Parameters: axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boo

DataFrame.mask()

DataFrame.mask(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True) [source] Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other. Parameters: cond : boolean NDFrame, array or callable If cond is callable, it is computed on the NDFrame and should return boolean NDFrame or array. The callable must not change input NDFrame (though pandas doesn?t check it). New in version

DataFrame.loc

DataFrame.loc Purely label-location based indexer for selection by label. .loc[] is primarily label based, but may also be used with a boolean array. Allowed inputs are: A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index, and never as an integer position along the index). A list or array of labels, e.g. ['a', 'b', 'c']. A slice object with labels, e.g. 'a':'f' (note that contrary to usual python slices, both the start and the stop are included!). A boolean ar