Panel4D.reindex_like()

Panel4D.reindex_like(other, method=None, copy=True, limit=None, tolerance=None) [source] Return an object with matching indices to myself. Parameters: other : Object method : string or None copy : boolean, default True limit : int, default None Maximum number of consecutive labels to fill for inexact matches. tolerance : optional Maximum distance between labels of the other object and this object for inexact matches. New in version 0.17.0. Returns: reindexed : same as input Notes

Index.insert()

Index.insert(loc, item) [source] Make new Index inserting new item at location. Follows Python list.append semantics for negative values Parameters: loc : int item : object Returns: new_index : Index

DataFrame.mode()

DataFrame.mode(axis=0, numeric_only=False) [source] Gets the mode(s) of each element along the axis selected. Empty if nothing has 2+ occurrences. Adds a row for each mode per label, fills in gaps with nan. Note that there could be multiple values returned for the selected axis (when more than one item share the maximum frequency), which is the reason why a dataframe is returned. If you want to impute missing values with the mode in a dataframe df, you can just do this: df.fillna(df.mode().

Panel.sub()

Panel.sub(other, axis=0) [source] Subtraction of series and other, element-wise (binary operator sub). Equivalent to panel - other. Parameters: other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns: Panel See also Panel.rsub

CategoricalIndex.order()

CategoricalIndex.order(return_indexer=False, ascending=True) [source] Return sorted copy of Index DEPRECATED: use Index.sort_values()

Series.cummax()

Series.cummax(axis=None, skipna=True, *args, **kwargs) [source] Return cumulative max over requested axis. Parameters: axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns: cummax : scalar

Series.product()

Series.product(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) [source] Return the product of the values for the requested axis Parameters: axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, bo

pandas.pivot_table()

pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All') [source] Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame Parameters: data : DataFrame values : column to aggregate, optional index : column, Grouper, array, or list of the previous If an array is passed

Series.dt.daysinmonth

Series.dt.daysinmonth The number of days in the month New in version 0.16.0.

pandas.reset_option()

pandas.reset_option(pat) = Reset one or more options to their default value. Pass ?all? as argument to reset all options. Available options: display.[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr] display.latex.[escape, longtable, repr] display.[line_width, max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage, mpl_style, multi_sparse,