Index.nbytes

Index.nbytes return the number of bytes in the underlying data

TimedeltaIndex.to_datetime()

TimedeltaIndex.to_datetime(dayfirst=False) [source] DEPRECATED: use pandas.to_datetime() instead. For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex

DatetimeIndex.weekofyear

DatetimeIndex.weekofyear The week ordinal of the year

DatetimeIndex.union_many()

DatetimeIndex.union_many(others) [source] A bit of a hack to accelerate unioning a collection of indexes

MultiIndex.is_monotonic_decreasing

MultiIndex.is_monotonic_decreasing return if the index is monotonic decreasing (only equal or decreasing) values.

Panel.between_time()

Panel.between_time(start_time, end_time, include_start=True, include_end=True) [source] Select values between particular times of the day (e.g., 9:00-9:30 AM). Parameters: start_time : datetime.time or string end_time : datetime.time or string include_start : boolean, default True include_end : boolean, default True Returns: values_between_time : type of caller

Series.plot.hist()

Series.plot.hist(bins=10, **kwds) [source] Histogram New in version 0.17.0. Parameters: bins: integer, default 10 Number of histogram bins to be used **kwds : optional Keyword arguments to pass on to pandas.Series.plot(). Returns: axes : matplotlib.AxesSubplot or np.array of them

Series.between_time()

Series.between_time(start_time, end_time, include_start=True, include_end=True) [source] Select values between particular times of the day (e.g., 9:00-9:30 AM). Parameters: start_time : datetime.time or string end_time : datetime.time or string include_start : boolean, default True include_end : boolean, default True Returns: values_between_time : type of caller

Panel.get_ftype_counts()

Panel.get_ftype_counts() [source] Return the counts of ftypes in this object.

Series.squeeze()

Series.squeeze(**kwargs) [source] Squeeze length 1 dimensions.