CategoricalIndex.union()

CategoricalIndex.union(other) [source] Form the union of two Index objects and sorts if possible. Parameters: other : Index or array-like Returns: union : Index Examples >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.union(idx2) Int64Index([1, 2, 3, 4, 5, 6], dtype='int64')

CategoricalIndex.to_datetime()

CategoricalIndex.to_datetime(dayfirst=False) [source] DEPRECATED: use pandas.to_datetime() instead. For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex

CategoricalIndex.to_native_types()

CategoricalIndex.to_native_types(slicer=None, **kwargs) [source] slice and dice then format

CategoricalIndex.tolist()

CategoricalIndex.tolist() [source] return a list of the Index values

CategoricalIndex.T

CategoricalIndex.T return the transpose, which is by definition self

CategoricalIndex.take()

CategoricalIndex.take(indices, axis=0, allow_fill=True, fill_value=None, **kwargs) [source] return a new %(klass)s of the values selected by the indices For internal compatibility with numpy arrays. Parameters: indices : list Indices to be taken axis : int, optional The axis over which to select values, always 0. allow_fill : bool, default True fill_value : bool, default None If allow_fill=True and fill_value is not None, indices specified by -1 is regarded as NA. If Index doesn?t hol

CategoricalIndex.sym_diff()

CategoricalIndex.sym_diff(*args, **kwargs) [source]

CategoricalIndex.summary()

CategoricalIndex.summary(name=None) [source]

CategoricalIndex.symmetric_difference()

CategoricalIndex.symmetric_difference(other, result_name=None) [source] Compute the symmetric difference of two Index objects. It?s sorted if sorting is possible. Parameters: other : Index or array-like result_name : str Returns: symmetric_difference : Index Notes symmetric_difference contains elements that appear in either idx1 or idx2 but not both. Equivalent to the Index created by idx1.difference(idx2) | idx2.difference(idx1) with duplicates dropped. Examples >>> idx1 = Ind

CategoricalIndex.strides

CategoricalIndex.strides return the strides of the underlying data