CategoricalIndex.base

CategoricalIndex.base return the base object if the memory of the underlying data is shared

Series.equals()

Series.equals(other) [source] Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.

Panel.ftypes

Panel.ftypes Return the ftypes (indication of sparse/dense and dtype) in this object.

TimedeltaIndex.is_monotonic_decreasing

TimedeltaIndex.is_monotonic_decreasing return if the index is monotonic decreasing (only equal or decreasing) values.

Series.is_copy

Series.is_copy = None

TimedeltaIndex.union()

TimedeltaIndex.union(other) [source] Specialized union for TimedeltaIndex objects. If combine overlapping ranges with the same DateOffset, will be much faster than Index.union Parameters: other : TimedeltaIndex or array-like Returns: y : Index or TimedeltaIndex

Panel4D.lt()

Panel4D.lt(other, axis=None) [source] Wrapper for comparison method lt

Panel4D.mean()

Panel4D.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) [source] Return the mean of the values for the requested axis Parameters: axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel numeric_only : boolean, def

DatetimeIndex.tolist()

DatetimeIndex.tolist() [source] return a list of the underlying data

Series.select()

Series.select(crit, axis=0) [source] Return data corresponding to axis labels matching criteria Parameters: crit : function To be called on each index (label). Should return True or False axis : int Returns: selection : type of caller