CategoricalIndex.drop_duplicates()

CategoricalIndex.drop_duplicates(*args, **kwargs) [source] Return Index with duplicate values removed Parameters: keep : {?first?, ?last?, False}, default ?first? first : Drop duplicates except for the first occurrence. last : Drop duplicates except for the last occurrence. False : Drop all duplicates. take_last : deprecated Returns: deduplicated : Index

CategoricalIndex.order()

CategoricalIndex.order(return_indexer=False, ascending=True) [source] Return sorted copy of Index DEPRECATED: use Index.sort_values()

DataFrame.to_excel()

DataFrame.to_excel(excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True) [source] Write DataFrame to a excel sheet Parameters: excel_writer : string or ExcelWriter object File path or existing ExcelWriter sheet_name : string, default ?Sheet1? Name of sheet which will contain DataFrame na_rep : string, default ?? Missing

MultiIndex.set_levels()

MultiIndex.set_levels(levels, level=None, inplace=False, verify_integrity=True) [source] Set new levels on MultiIndex. Defaults to returning new index. Parameters: levels : sequence or list of sequence new level(s) to apply level : int, level name, or sequence of int/level names (default None) level(s) to set (None for all levels) inplace : bool if True, mutates in place verify_integrity : bool (default True) if True, checks that levels and labels are compatible Returns: new inde

Series.dt.ceil()

Series.dt.ceil(*args, **kwargs) [source] ceil the index to the specified freq Parameters: freq : freq string/object Returns: index of same type Raises: ValueError if the freq cannot be converted

Series.skew()

Series.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) [source] Return unbiased skew over requested axis Normalized by N-1 Parameters: axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, bo

StataWriter.write_file()

StataWriter.write_file() [source]

Series.dt.is_year_end

Series.dt.is_year_end Logical indicating if last day of year (defined by frequency)

Series.get()

Series.get(key, default=None) [source] Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found. Parameters: key : object Returns: value : type of items contained in object

Panel4D.apply()

Panel4D.apply(func, axis='major', **kwargs) [source] Applies function along axis (or axes) of the Panel Parameters: func : function Function to apply to each combination of ?other? axes e.g. if axis = ?items?, the combination of major_axis/minor_axis will each be passed as a Series; if axis = (?items?, ?major?), DataFrames of items & major axis will be passed axis : {?items?, ?minor?, ?major?}, or {0, 1, 2}, or a tuple with two axes Additional keyword arguments will be passed as ke