TimedeltaIndex.max()

TimedeltaIndex.max(axis=None, *args, **kwargs) [source] Return the maximum value of the Index or maximum along an axis. See also numpy.ndarray.max

TimedeltaIndex.name

TimedeltaIndex.name = None

TimedeltaIndex.floor()

TimedeltaIndex.floor(freq) [source] floor the index to the specified freq Parameters: freq : freq string/object Returns: index of same type Raises: ValueError if the freq cannot be converted

Rolling.corr()

Rolling.corr(other=None, pairwise=None, **kwargs) [source] rolling sample correlation Parameters: other : Series, DataFrame, or ndarray, optional if not supplied then will default to self and produce pairwise output pairwise : bool, default None If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of

MultiIndex.difference()

MultiIndex.difference(other) [source] Compute sorted set difference of two MultiIndex objects Returns: diff : MultiIndex

GroupBy.transform()

GroupBy.transform(func, *args, **kwargs) [source]

DatetimeIndex.month

DatetimeIndex.month The month as January=1, December=12

Series.consolidate()

Series.consolidate(inplace=False) [source] Compute NDFrame with ?consolidated? internals (data of each dtype grouped together in a single ndarray). Mainly an internal API function, but available here to the savvy user Parameters: inplace : boolean, default False If False return new object, otherwise modify existing object Returns: consolidated : type of caller

DatetimeIndex.hasnans

DatetimeIndex.hasnans = None

DataFrame.get_ftype_counts()

DataFrame.get_ftype_counts() [source] Return the counts of ftypes in this object.