DataFrame.to_msgpack()

DataFrame.to_msgpack(path_or_buf=None, encoding='utf-8', **kwargs) [source] msgpack (serialize) object to input file path THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release. Parameters: path : string File path, buffer-like, or None if None, return generated string append : boolean whether to append to an existing msgpack (default is False) compress : type of compressor (zlib or blosc), default to None (no compression)

DataFrame.xs()

DataFrame.xs(key, axis=0, level=None, drop_level=True) [source] Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Defaults to cross-section on the rows (axis=0). Parameters: key : object Some label contained in the index, or partially in a MultiIndex axis : int, default 0 Axis to retrieve cross-section on level : object, defaults to first n levels (n=1 or len(key)) In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can b

CategoricalIndex.sortlevel()

CategoricalIndex.sortlevel(level=None, ascending=True, sort_remaining=None) [source] For internal compatibility with with the Index API Sort the Index. This is for compat with MultiIndex Parameters: ascending : boolean, default True False to sort in descending order level, sort_remaining are compat parameters Returns: sorted_index : Index

TimedeltaIndex.where()

TimedeltaIndex.where(cond, other=None) [source] New in version 0.19.0. Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters: cond : boolean same length as self other : scalar, or array-like

Series.str.center()

Series.str.center(width, fillchar=' ') [source] Filling left and right side of strings in the Series/Index with an additional character. Equivalent to str.center(). Parameters: width : int Minimum width of resulting string; additional characters will be filled with fillchar fillchar : str Additional character for filling, default is whitespace Returns: filled : Series/Index of objects

TimedeltaIndex.get_indexer()

TimedeltaIndex.get_indexer(target, method=None, limit=None, tolerance=None) [source] Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters: target : Index method : {None, ?pad?/?ffill?, ?backfill?/?bfill?, ?nearest?}, optional default: exact matches only. pad / ffill: find the PREVIOUS index value if no exact match. backfill / bfill: use NEXT index value if no exact

TimedeltaIndex.append()

TimedeltaIndex.append(other) [source] Append a collection of Index options together Parameters: other : Index or list/tuple of indices Returns: appended : Index

TimedeltaIndex.shift()

TimedeltaIndex.shift(n, freq=None) [source] Specialized shift which produces a DatetimeIndex Parameters: n : int Periods to shift by freq : DateOffset or timedelta-like, optional Returns: shifted : DatetimeIndex

Series.apply()

Series.apply(func, convert_dtype=True, args=(), **kwds) [source] Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values Parameters: func : function convert_dtype : boolean, default True Try to find better dtype for elementwise function results. If False, leave as dtype=object args : tuple Positional arguments to pass to function in addition to the value Additional keyword arguments wil

MultiIndex.reindex()

MultiIndex.reindex(target, method=None, level=None, limit=None, tolerance=None) [source] Create index with target?s values (move/add/delete values as necessary) Returns: new_index : pd.MultiIndex Resulting index indexer : np.ndarray or None Indices of output values in original index