CategoricalIndex.unique()

CategoricalIndex.unique() [source] Return Index of unique values in the object. Significantly faster than numpy.unique. Includes NA values. The order of the original is preserved. Returns: uniques : Index

Panel.tz_localize()

Panel.tz_localize(*args, **kwargs) [source] Localize tz-naive TimeSeries to target time zone. Parameters: tz : string or pytz.timezone object axis : the axis to localize level : int, str, default None If axis ia a MultiIndex, localize a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data ambiguous : ?infer?, bool-ndarray, ?NaT?, default ?raise? ?infer? will attempt to infer fall dst-transition hours based on order bool-ndarray wh

Panel.axes

Panel.axes Return index label(s) of the internal NDFrame

MultiIndex.is_numeric()

MultiIndex.is_numeric() [source]

DatetimeIndex.microsecond

DatetimeIndex.microsecond The microseconds of the datetime

Panel4D.shape

Panel4D.shape Return a tuple of axis dimensions

CategoricalIndex.str()

CategoricalIndex.str() [source] Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular method. Patterned after Python?s string methods, with some inspiration from R?s stringr package. Examples >>> s.str.split('_') >>> s.str.replace('_', '')

DatetimeIndex.is_floating()

DatetimeIndex.is_floating() [source]

CategoricalIndex.symmetric_difference()

CategoricalIndex.symmetric_difference(other, result_name=None) [source] Compute the symmetric difference of two Index objects. It?s sorted if sorting is possible. Parameters: other : Index or array-like result_name : str Returns: symmetric_difference : Index Notes symmetric_difference contains elements that appear in either idx1 or idx2 but not both. Equivalent to the Index created by idx1.difference(idx2) | idx2.difference(idx1) with duplicates dropped. Examples >>> idx1 = Ind

CategoricalIndex.is_unique

CategoricalIndex.is_unique = None