DataFrame.ge()

DataFrame.ge(other, axis='columns', level=None) [source] Wrapper for flexible comparison methods ge

MultiIndex.argsort()

MultiIndex.argsort(*args, **kwargs) [source]

Panel.is_copy

Panel.is_copy = None

Series()

class pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False) [source] One-dimensional ndarray with axis labels (including time series). Labels need not be unique but must be any hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN) Operation

Resampler.interpolate()

Resampler.interpolate(method='linear', axis=0, limit=None, inplace=False, limit_direction='forward', downcast=None, **kwargs) [source] Interpolate values according to different methods. New in version 0.18.1. Please note that only method='linear' is supported for DataFrames/Series with a MultiIndex. Parameters: method : {?linear?, ?time?, ?index?, ?values?, ?nearest?, ?zero?, ?slinear?, ?quadratic?, ?cubic?, ?barycentric?, ?krogh?, ?polynomial?, ?spline?, ?piecewise_polynomial?, ?from_

DatetimeIndex.asobject

DatetimeIndex.asobject return object Index which contains boxed values this is an internal non-public method

CategoricalIndex.is_categorical()

CategoricalIndex.is_categorical() [source]

Panel4D.is_copy

Panel4D.is_copy = None

Series.diff()

Series.diff(periods=1) [source] 1st discrete difference of object Parameters: periods : int, default 1 Periods to shift for forming difference Returns: diffed : Series

MultiIndex.to_native_types()

MultiIndex.to_native_types(slicer=None, **kwargs) [source] slice and dice then format