Series.at_time()

Series.at_time(time, asof=False) [source] Select values at particular time of day (e.g. 9:30AM). Parameters: time : datetime.time or string Returns: values_at_time : type of caller

DatetimeIndex.sortlevel()

DatetimeIndex.sortlevel(level=None, ascending=True, sort_remaining=None) [source] For internal compatibility with with the Index API Sort the Index. This is for compat with MultiIndex Parameters: ascending : boolean, default True False to sort in descending order level, sort_remaining are compat parameters Returns: sorted_index : Index

Index.copy()

Index.copy(name=None, deep=False, dtype=None, **kwargs) [source] Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters: name : string, optional deep : boolean, default False dtype : numpy dtype or pandas type Returns: copy : Index Notes In most cases, there should be no functional difference from using deep, but if deep is passed it will attempt to deepcopy.

Index.get_slice_bound()

Index.get_slice_bound(label, side, kind) [source] Calculate slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if side=='right') position of given label. Parameters: label : object side : {?left?, ?right?} kind : {?ix?, ?loc?, ?getitem?}

DataFrame.to_string()

DataFrame.to_string(buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, line_width=None, max_rows=None, max_cols=None, show_dimensions=False) [source] Render a DataFrame to a console-friendly tabular output. Parameters: buf : StringIO-like, optional buffer to write to columns : sequence, optional the subset of columns to write; default None writes all columns col_space : int, o

Panel.between_time()

Panel.between_time(start_time, end_time, include_start=True, include_end=True) [source] Select values between particular times of the day (e.g., 9:00-9:30 AM). Parameters: start_time : datetime.time or string end_time : datetime.time or string include_start : boolean, default True include_end : boolean, default True Returns: values_between_time : type of caller

Resampler.pad()

Resampler.pad(limit=None) [source] Forward fill the values Parameters: limit : integer, optional limit of how many values to fill See also Series.fillna, DataFrame.fillna

Series.resample()

Series.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0, on=None, level=None) [source] Convenience method for frequency conversion and resampling of time series. Object must have a datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or pass datetime-like values to the on or level keyword. Parameters: rule : string the offset string or object representing target conversion axis : in

MultiIndex.is_()

MultiIndex.is_(other) [source] More flexible, faster check like is but that works through views Note: this is not the same as Index.identical(), which checks that metadata is also the same. Parameters: other : object other object to compare against. Returns: True if both have same underlying data, False otherwise : bool

DatetimeIndex.weekofyear

DatetimeIndex.weekofyear The week ordinal of the year