CategoricalIndex.dtype_str

CategoricalIndex.dtype_str = None

MultiIndex.putmask()

MultiIndex.putmask(mask, value) [source] return a new Index of the values set with the mask See also numpy.ndarray.putmask

Panel.add_suffix()

Panel.add_suffix(suffix) [source] Concatenate suffix string with panel items names. Parameters: suffix : string Returns: with_suffix : type of caller

pandas.timedelta_range()

pandas.timedelta_range(start=None, end=None, periods=None, freq='D', name=None, closed=None) [source] Return a fixed frequency timedelta index, with day as the default frequency Parameters: start : string or timedelta-like, default None Left bound for generating dates end : string or datetime-like, default None Right bound for generating dates periods : integer or None, default None If None, must specify start and end freq : string or DateOffset, default ?D? (calendar daily) Frequen

TimedeltaIndex.value_counts()

TimedeltaIndex.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True) [source] Returns object containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters: normalize : boolean, default False If True then the object returned will contain the relative frequencies of the unique values. sort : boolean, default True Sort by values a

DatetimeIndex.value_counts()

DatetimeIndex.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True) [source] Returns object containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters: normalize : boolean, default False If True then the object returned will contain the relative frequencies of the unique values. sort : boolean, default True Sort by values as

DataFrameGroupBy.cumprod()

DataFrameGroupBy.cumprod(axis=0, *args, **kwargs) [source] Cumulative product for each group See also pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

DataFrame.assign()

DataFrame.assign(**kwargs) [source] Assign new columns to a DataFrame, returning a new object (a copy) with all the original columns in addition to the new ones. New in version 0.16.0. Parameters: kwargs : keyword, value pairs keywords are the column names. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn?t check it). If the values are not callable, (e.g. a Series, scalar, or

Series.str.rstrip()

Series.str.rstrip(to_strip=None) [source] Strip whitespace (including newlines) from each string in the Series/Index from right side. Equivalent to str.rstrip(). Returns: stripped : Series/Index of objects

MultiIndex.names

MultiIndex.names Names of levels in MultiIndex