DatetimeIndex.union_many()

DatetimeIndex.union_many(others) [source] A bit of a hack to accelerate unioning a collection of indexes

DatetimeIndex.weekofyear

DatetimeIndex.weekofyear The week ordinal of the year

TimedeltaIndex.to_datetime()

TimedeltaIndex.to_datetime(dayfirst=False) [source] DEPRECATED: use pandas.to_datetime() instead. For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex

Index.nbytes

Index.nbytes return the number of bytes in the underlying data

DatetimeIndex.to_julian_date()

DatetimeIndex.to_julian_date() [source] Convert DatetimeIndex to Float64Index of Julian Dates. 0 Julian date is noon January 1, 4713 BC. http://en.wikipedia.org/wiki/Julian_day

Panel.minor_xs()

Panel.minor_xs(key) [source] Return slice of panel along minor axis Parameters: key : object Minor axis label Returns: y : DataFrame index -> major axis, columns -> items Notes minor_xs is only for getting, not setting values. MultiIndex Slicers is a generic way to get/set values on any level or levels and is a superset of minor_xs functionality, see MultiIndex Slicers

DataFrame.nlargest()

DataFrame.nlargest(n, columns, keep='first') [source] Get the rows of a DataFrame sorted by the n largest values of columns. New in version 0.17.0. Parameters: n : int Number of items to retrieve columns : list or str Column name or names to order by keep : {?first?, ?last?, False}, default ?first? Where there are duplicate values: - first : take the first occurrence. - last : take the last occurrence. Returns: DataFrame Examples >>> df = DataFrame({'a': [1, 10, 8, 11,

Series.mad()

Series.mad(axis=None, skipna=None, level=None) [source] Return the mean absolute deviation of the values for the requested axis Parameters: axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean columns. If

CategoricalIndex.get_values()

CategoricalIndex.get_values() [source] return the underlying data as an ndarray

DataFrame.to_dict()

DataFrame.to_dict(orient='dict') [source] Convert DataFrame to dictionary. Parameters: orient : str {?dict?, ?list?, ?series?, ?split?, ?records?, ?index?} Determines the type of the values of the dictionary. dict (default) : dict like {column -> {index -> value}} list : dict like {column -> [values]} series : dict like {column -> Series(values)} split : dict like {index -> [index], columns -> [columns], data -> [values]} records : list like [{column -> value},